
Accelerated Vector Pruning for Optimal POMDP Solvers
Supplementary Material

Erwin Walraven and Matthijs T. J. Spaan
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

This supplement contains the proof of Lemma 1, details
on the experimental setup, additional experimental results, an
illustration of our algorithm and information about the source
code that is publicly available.

Proof of Lemma 1
This section contains the proof of Lemma 1, which was omit-
ted from the paper.
Lemma 1. Each corner of the feasible region of the standard
LP (U,w) corresponds to a corner belief of value function U .

Proof. The concave surface defining the LP solutions can
be defined as w · b−maxu∈U u · b, where b is a belief. The
expression maxu∈U u · b corresponds to the convex surface
of value function U . By definition, the slope of the value
function U changes at the corner beliefs. Since w is a single
vector, it follows that the concave surface w ·b−maxu∈U u·b
also changes slope at the corner beliefs.

Details about experimental setup
Table 1 shows the parameters of the POMDP domains in-
volved in the experiments. Most of the domain descriptions
can be obtained from www.pomdp.org. The last column
shows the number of LPs that was used in the first experi-
ment in the paper. Some domains could be solved with fewer
than 30000 LPs. For RockSmp4x4 we only consider the first
1000 LPs due to memory limits. The domain 4x3CO is not
included in the experiments since it represents a POMDP
with full observability.

In the vector pruning experiment we use a value func-
tion of the 4x5x2 domain to generate 1000 separate value
functions Vq for which |Vq| = q. The procedure to gener-
ate these value functions works as follows. During incre-
mental pruning we store a value function V immediately
after the final pruning step in a dynamic programming stage.
A value function Vq contains the first q vectors from V .
Since prune(V) = V it holds that each value function Vq

does not contain dominated vectors. This property is im-
portant because it means that a pruning algorithm needs to
solve q LPs to prune Vq .

Name |S| |A| |O| #LPs experiment 1

1D 4 2 2 50
4x3 11 4 6 30000
4x4 16 4 2 2331
4x5x2 39 4 4 30000
AircraftID 12 6 5 30000
Cheese 11 4 7 1514
Hallway 60 5 21 30000
Hallway2 92 5 17 30000
Network 7 4 2 30000
Partpaint 4 4 2 7534
RockS4x4 257 9 2 1000
Shuttle 8 3 5 30000
Tiger-grid 36 5 17 30000

Table 1: Parameters of the POMDP domains

Experimental results for other LP solvers
Figures 1 and 3 contain the results of the vector pruning
experiments with Gurobi and lpsolve. The differences in
speedup and running time can be explained by observing
that different APIs are used to interact with the LP solvers,
and internally the LP solvers may use different algorithms
and heuristics. However, since our method outperforms other
methods in all cases, we can conclude that our method works
well, regardless of the LP solver that is used.

Tables 2 and 3 contain the results of the LP experiment for
Gurobi and lpsolve. The conclusions that can be derived are
identical to the conclusions discussed in the main paper.

Figures 2 and 4 contain the results of the incremental
pruning experiments for Gurobi and lpsolve. The figures
show that our variant of incremental pruning consistently
outperforms other methods involved in the comparison.

Domain Std (s) Dec (s) Speedup Constr. (%)

4x5x2 77.79 18.53 4.20 11.9± 15.9
AircraftID 51.12 12.82 3.99 8.7± 14.6
Hallway2 73.14 21.94 3.33 18.0± 27.0
Tiger-grid 67.66 20.72 3.26 12.6± 18.3
4x3 38.97 16.29 2.39 17.8± 19.4
Shuttle 34.40 16.25 2.12 18.4± 20.2
RockS4x4 0.97 0.49 1.99 37.7± 23.4
Hallway 26.77 15.95 1.68 26.8± 27.7
Network 11.94 10.30 1.16 26.7± 19.8
Partpaint 1.96 1.83 1.07 38.7± 31.8
1D 0.01 0.01 1.00 84.0± 21.8
Cheese 0.21 0.21 1.00 87.8± 22.1
4x4 0.43 0.55 0.78 76.0± 22.5

Table 2: Results LP experiment: Gurobi

0

1

2

3

0 250 500 750 1000
Number of vectors

S
p

ee
d

u
p

(a) Vector pruning speedup

0

5

10

15

20

0 250 500 750 1000
Number of vectors

T
im

e
(s

)

Algorithm Skyline W&L std W&L dec

(b) Pruning method comparison

Figure 1: Pruning experiments with Gurobi

0

100

200

GIP GIP-D IBIP RBIP

4x3

0

2000

4000

GIP GIP-D IBIP RBIP

4x5x2

0

100

200

GIP GIP-D IBIP RBIP

Network

0

100

200

GIP GIP-D IBIP RBIP

Shuttle

Figure 2: Incremental pruning experiment: Gurobi

Domain Std (s) Dec (s) Speedup Constr. (%)

4x5x2 88.95 20.83 4.27 12.4± 16.8
AircraftID 37.70 12.66 2.98 8.8± 14.7
Hallway2 80.47 27.37 2.94 18.2± 27.5
4x3 42.65 14.79 2.88 17.8± 19.4
Tiger-grid 60.02 23.72 2.53 12.8± 18.5
Shuttle 39.82 16.87 2.36 18.5± 20.3
Hallway 24.19 17.76 1.36 26.7± 27.9
Network 10.57 8.50 1.24 26.6± 19.8
RockS4x4 1.08 0.92 1.17 36.8± 23.1
Cheese 0.13 0.14 0.96 87.8± 22.1
1D 0.00 0.00 0.75 84.0± 21.8
4x4 0.30 0.41 0.72 75.3± 23.0
Partpaint 1.20 1.69 0.71 38.8± 31.8

Table 3: Results LP experiment: lpsolve

0

2

4

6

0 250 500 750 1000
Number of vectors

S
p

ee
d

u
p

(a) Vector pruning speedup

0

5

10

15

20

0 250 500 750 1000
Number of vectors

T
im

e
(s

)

Algorithm Skyline W&L std W&L dec

(b) Pruning method comparison

Figure 3: Pruning experiments with lpsolve

0

200

400

GIP GIP-D IBIP RBIP

4x3

0

10000

20000

GIP GIP-D IBIP RBIP

4x5x2

0

100

200

GIP GIP-D IBIP RBIP

Network

0

50

100

GIP GIP-D IBIP RBIP

Shuttle

Figure 4: Incremental pruning experiment: lpsolve

Number of constraints used by the algorithm
In the paper we observed that the relatively large standard
deviation in the first experiment is caused by small LPs, in
which a large fraction of the constraints is used. Figure 5
shows the number of constraints (i.e., the percentage) as a
function of the total number of constraints for several do-
mains. The graphs confirm that in small LPs a relatively large
number of constraints is added, which in turn affects the
standard deviation.

0

25

50

75

100

0 200 400 600
Number of constraints

C
o

n
st

ra
in

ts
 u

se
d

 (
%

) 4x3

0

25

50

75

100

0 200 400 600 800
Number of constraints

C
o

n
st

ra
in

ts
 u

se
d

 (
%

) 4x5x2

0

25

50

75

100

0 100 200 300 400
Number of constraints

C
o

n
st

ra
in

ts
 u

se
d

 (
%

) Network

0

25

50

75

100

0 500 1000 1500 2000
Number of constraints

C
o

n
st

ra
in

ts
 u

se
d

 (
%

) Shuttle

Figure 5: Number of constraints used by the decomposed LP

Open-source software: SolvePOMDP
An implementation of incremental pruning combined with
the decomposed LP can be found in SolvePOMDP, an
open-source java program for solving Partially Observable
Markov Decision Processes. The program includes an ex-
act value iteration algorithm for POMDPs, as well as an
approximate algorithm based on point-based value itera-
tion. More information about SolvePOMDP can be found
on www.erwinwalraven.nl/solvepomdp.

Illustration of the decomposed LP algorithm
We consider the linear program shown in Figure 6a and we
show how Algorithm 3 finds the optimal solution. We assume
that the algorithm selects belief b′ = (1, 0) on line 7. In the
first iteration it adds the constraint with the lowest objective
value in b′, which is shown in Figure 6b. After solving the
master LP the belief point b′ = (0, 1) is found, which is
represented by the dot. The same procedure is used to select
a new constraint, after which the master LP is solved again
to obtain belief b′ = (0.47, 0.53), shown in Figure 6c. In
the third iteration belief b′ = (0.18, 0.82) is found, which is
shown in Figure 6d. This belief b′ corresponds to the optimal
solution. One of the constraints has not been added during
the execution of the algorithm.

(1,0) (0,1)

Belief

-0.5

0

0.5

O
b

je
c
ti
v
e

 d
(a) LP constraints

(1,0) (0,1)

Belief

-0.5

0

0.5

O
b

je
c
ti
v
e

 d

(b) Add first constraint

(1,0) (0.47,0.53) (0,1)

Belief

-0.5

0

0.5

O
b
je

c
ti
v
e
 d

(c) Add second constraint

(1,0) (0.18,0.82) (0,1)

Belief

-0.5

0

0.5

O
b
je

c
ti
v
e
 d

(d) Add third constraint

Figure 6: Example execution of the decomposed LP

