
Bounding the Probability of Resource Constraint Violations in Multi-Agent MDPs

Frits de Nijs and Erwin Walraven and Mathijs M. de Weerdt and Matthijs T. J. Spaan
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

Abstract

Multi-agent planning problems with constraints on global
resource consumption occur in several domains. Existing algo-
rithms for solving Multi-agent Markov Decision Processes can
compute policies that meet a resource constraint in expectation,
but these policies provide no guarantees on the probability that
a resource constraint violation will occur. We derive a method
to bound constraint violation probabilities using Hoeffding’s
inequality. This method is applied to two existing approaches
for computing policies satisfying constraints: the Constrained
MDP framework and a Column Generation approach. We also
introduce an algorithm to adaptively relax the bound up to a
given maximum violation tolerance. Experiments on a hard
toy problem show that the resulting policies outperform static
optimal resource allocations to an arbitrary level. By testing
the algorithms on more realistic planning domains from the
literature, we demonstrate that the adaptive bound is able to
efficiently trade off violation probability with expected value,
outperforming state-of-the-art planners.

Introduction
When decision-making agents share collectively owned re-
sources, their actions need to be coordinated subject to the
availability of these resources. In many problem domains it is
impractical, inefficient or costly to coordinate resource con-
sumption during execution. For example, load balancing of
energy consumption in smart energy grids has instantaneous
effects on the stability of the grid, which requires real-time
decisions. Other examples are rescue operations or military
campaigns, during which communication options may be
limited by the hostile environment.

Before execution, it is possible to merge the decision-
making problems of individual agents into a joint resource-
constrained optimization problem. However, solving this
problem quickly becomes intractable because the size of the
joint problem grows exponentially in the number of agents.
Wu and Durfee (2010) show that it is more efficient to op-
timize an off-line deterministic allocation of resources to
agents. A scalable Lagrangian relaxation of this optimiza-
tion problem is presented by Agrawal, Varakantham, and
Yeoh (2016). Unfortunately, when agents are operating in

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an uncertain environment, such an allocation may leave a
significant portion of the available resources unused.

When policies of agents are allowed to satisfy resource
constraints in expectation (such as with accidental overruns
of budget, or infrastructural constraints), this weakness of
deterministic resource allocations can be overcome, result-
ing in significantly higher expected value. Column Gener-
ation for linear programs (LPs) and Constrained Markov
Decision Processes (CMDPs) can be used to compute such
conditional resource allocations by demanding that the total
expected resource consumption of the agents is not more
than the resource availability (Yost and Washburn 2000;
Altman 1999). However, the resulting policies satisfy the
constraints only in expectation, and constraint violations may
occur at execution time. There is no guarantee on the prob-
ability of violations occurring, which makes it unattractive
when only a limited amount of violations can be tolerated.

In this paper we demonstrate that the probability of con-
straint violation can be bounded by using Hoeffding’s in-
equality (1963) to derive a reduced constraint. By planning
using this reduced constraint, we obtain safe conditional poli-
cies for the real constraint. Because this bound turns out to
be quite conservative, we also propose to iteratively relax
it, resulting in conditional resource allocations with higher
expected value that still respect the constraint violation toler-
ance. We show that Column Generation for LPs has several
attractive properties compared to CMDPs when using the
constraint relaxation. We further improve the scalability of
this method by introducing a column pruning technique that
significantly reduces the number of columns considered per
iteration, while preserving convergence characteristics.

When communication between agents is available, re-
source conflicts can be arbitrated at policy execution time
(Meuleau et al. 1998; De Nijs, Spaan, and De Weerdt
2015). Existing deterministic preallocation methods that
work when communication is not available only support bi-
nary resource consumption functions (Wu and Durfee 2010;
Agrawal, Varakantham, and Yeoh 2016). Our method natu-
rally supports multi-unit resource consumption, and requires
no communication between agents during execution. It can
be seen as an anytime algorithm for computing policies satis-
fying a given violation tolerance.

We evaluate our algorithm against two state-of-the-art
deterministic resource allocation methods (Wu and Durfee



2010; Agrawal, Varakantham, and Yeoh 2016). We compare
on a hard artificial problem and on more realistic domains
from literature: power-constrained planning (De Nijs, Spaan,
and De Weerdt 2015), Mars rovers (Wu and Durfee 2010),
and advertising (Boutilier and Lu 2016). The hard problem
demonstrates that deterministic resource allocations may per-
form arbitrarily worse than conditional allocations. On the
realistic domains our constraint relaxation in combination
with Column Generation and pruning is the only algorithm ca-
pable of scaling to the largest instances while still providing
guarantees on the probability of violations.

MMDPs with Global Resource Constraints
We consider finite-horizon Constrained Multi-agent Markov
Decision Processes, which consist of n independent agents,
each modeled as a Markov Decision Process (MDP, Bell-
man 1957), and a set of k global resource constraints. Our
model generalizes earlier models of Constrained Multi-
agent MDPs (Boutilier and Lu 2016; De Nijs, Spaan, and
De Weerdt 2015) because it allows for modeling two types
of constraints: instantaneous and budget constraints. Instan-
taneous constraints must be respected at any point in time,
such as the capacity limits of energy grids. Budget constraints
define a global resource budget that is defined over multiple
time steps, which occurs in money investment problems.

The tuple
〈
Si, Ai, Ti, Ri, h, s

i,1
〉

defines the MDP Mi for
agent i. Each agent has its own sets of states Si and actionsAi.
The transition function Ti : Si ×Ai × Si → [0, 1] gives the
probability of advancing to state s′ ∈ Si from state s ∈ Si
by choosing action a ∈ Ai, thus Ti (s, a, s′) = P (s′ | s, a).
The choice of action a in state s is rewarded through reward
function Ri : Si × Ai → R. The horizon h specifies the
total number of decisions and the initial state of agent i
is defined by si,1. A solution to the multi-agent planning
problem takes the form of a policy πi : {1, . . . , h}×Si → Ai
for each agent i, which can be used by the individual agents
to select their actions. Optimal policies in the finite-horizon
case are non-stationary, and therefore they should be time-
dependent. The policies should maximize the total expected
sum of rewards of the agents:

n∑
i=1

(
Eπi

[
h∑
t=1

Ri(si,t, πi(t, si,t))

∣∣∣∣∣ si,1 = si,1

] )
, (1)

where si,t denotes the state of agent i at time t. This expres-
sion is also known as the total expected value of the agents.

Global resource constraints force the agents to coordinate
their decisions, which means that the policies used by the
agents should maximize the total expected value while stay-
ing below global resource limits. The agents have access
to k resource types. For each agent i the consumption of
resource type j is defined using a function Ci,j : Si ×Ai →
[0, cmax,i,j ], where cmax,i,j denotes the maximum instanta-
neous consumption of resource type j for agent i. For in-
stantaneous constraints the resource limit at time t is defined
by Lj,t, where the usage at time t does not affect the limit
at t′ > t. Budget constraints are defined by a single limit Lj .

A resource violation occurs if the agents collectively use
more units of a resource than available. For instantaneous

constraints the limit of resource type j is violated at time t if
n∑
i=1

Ci,j(si,t, ai,t) > Lj,t, (2)

where si,t ∈ Si represents the state of agent i at time t and
ai,t ∈ Ai is the action executed by agent i at time t. Budget
constraints are violated if

h∑
t=1

n∑
i=1

Ci,j(si,t, ai,t) > Lj . (3)

In the remainder of the paper we present our algorithms for
instantaneous constraints only. The application to budget
constraints is almost identical since one budget constraint
involves all time steps rather than one.

Algorithms for Computing Policies
We discuss two methods which can be used to compute poli-
cies satisfying the resource constraints in expectation. In the
next section we use these methods as a starting point when
bounding constraint violation probabilities.

Constrained Markov Decision Processes
The Constrained MDP (CMDP, Altman 1999) framework
defines a linear program to solve MDPs and can be used to
impose additional constraints on the resulting stochastic poli-
cies. The main idea is to introduce a variable xit,s,a represent-
ing the probability that agent i reaches state s at time t and
executes action a. These variables can be used in probability
flow conservation constraints based on the stochastic MDP
transition function. The flow is initialized using a known
initial state probability distribution.

The CMDP formulation corresponds to the linear program
below, which maximizes the sum of expected rewards of
the agents while ensuring that the expected resource con-
sumption stays below the limit for each resource type. The
solution of the linear program can be used to define a stochas-
tic policy πi for each agent i. The stochastic policy selects
action a in state s at time t with probability P (πi(t, s) =
a) = xit,s,a /

∑
a′∈Ai

xit,s,a′ .

max
n∑
i=1

h∑
t=1

∑
s∈Si

∑
a∈Ai

xit,s,a ·Ri(s, a)

s.t.
∑
a′∈Ai

xit+1,s′,a′ =
∑
s∈Si

∑
a∈Ai

xit,s,a ·Ti(s, a, s′) ∀i, t, s′∈Si∑
a∈Ai

xi1,s,a = P (si,1 = s) ∀i, s ∈Si

n∑
i=1

∑
s∈Si

∑
a∈Ai

xit,s,a · Ci,j(s, a) ≤ Lj,t ∀j, t

Column Generation for Linear Programming
An alternative linear programming formulation has been pro-
posed by Yost and Washburn (2000). In this formulation we
use Zi to denote the finite set containing all possible deter-
ministic policies of MDP Mi. However, we never actually



enumerate all policies in this set. In contrast to CMDPs, the
solution defines a probability distribution over deterministic
policies, which requires less randomization during execution.
For a policy πi ∈ Zi we define Vi,πi

as the expected reward
of agent i when using policy πi starting from the initial state
si,1. For agent i we define Cj,ti,πi

as the expected consumption
for resource type j at time t when using policy πi ∈ Zi from
si,1. This expectation is equal to Hi,j(s

i,1, 1), defined by the
following recurrence:

Hi,j(s, t
′) =

{
Ci,j

(
s, πi(t

′, s)
)

t′= t∑
s′∈Si

P (s′|s, π(t′, s))Hi,j(s
′, t′+ 1) t′< t

Rather than selecting a policy πi ∈ Zi for each agent i,
Yost and Washburn propose to search for a probability distri-
bution over (deterministic) policies πi ∈ Zi as follows:

φ = max
n∑
i=1

∑
πi∈Zi

Vi,πi
· xi,πi

s.t.
n∑
i=1

∑
πi∈Zi

Cj,ti,πi
· xi,πi

≤ Lj,t ∀j, t

∑
πi∈Zi

xi,πi
= 1 ∀i, xi,πi

≥ 0 ∀i, πi,

(4)

in which the variables xi,πi
define this probability distribu-

tion. The LP contains a column for each policy πi ∈ Zi for
each agent i. The number of deterministic policies of an agent
scales exponentially in the number of states, which makes
directly solving the LP intractable.

In order to prevent full policy enumeration, a Column
Generation algorithm can be used which incrementally adds
columns corresponding to policies. It keeps track of a lower
bound φl and an upper bound φu on the optimal objective
value of (4) and adds columns until convergence. A lower
bound φl on the objective value can be obtained by solving
the LP with only a subset of policies. An upper bound φu can
be obtained using a Lagrangian relaxation:

max
n∑
i=1

∑
πi∈Zi

Vi,πi
· xi,πi

+
∑
j,t

λj,t

(
Lj,t −

n∑
i=1

∑
πi∈Zi

Cj,ti,πi
· xi,πi

)
s.t.

∑
πi∈Zi

xi,πi
= 1 ∀i, xi,πi

≥ 0 ∀i, πi,

(5)

where λj,t is the Lagrangian multiplier corresponding to
a constraint in (4), which can be obtained from the dual
solution. Since the constraints in the relaxation only affect
individual MDPs the upper bound is equal to:

∑
j,t

λj,tLj,t +

n∑
i=1

max
πi∈Zi

Vi,πi
−
∑
j,t

λj,tC
j,t
i,πi

. (6)

The maximization problem in (5) decouples into n sepa-
rate subproblems for which a maximizing policy should be

found. Such a maximizing policy can be found by solving the
MDP using a time-dependent reward function Gi,t(s, a) =
Ri(s, a)−

∑
j λj,tCi,j(s, a), which can be solved using stan-

dard MDP algorithms (e.g., value iteration).
The Column Generation algorithm initializes an empty

master LP. In each iteration it solves the LP to obtain the
multipliers λj,t and a lower bound φl. The multipliers are
used to solve n separate MDPs Mi using the reward func-
tion Gi,t, also resulting in a new upper bound φu. Each
computed policy then becomes a new column based on its
expected reward and expected resource consumption. The
algorithm is anytime, guaranteed to converge and subprob-
lems can be solved in a distributed fashion. Column Gen-
eration terminates when the dual prices λi,t stabilize, lead-
ing to an equal lower and upper bound (Vanderbeck 2005;
Liang and Wilhelm 2010). More details and pseudocode are
provided in the supplement, which is available on the home-
page of the authors.

Bounding Constraint Violation Probabilities
The methods discussed in the previous section compute poli-
cies which ensure that the expected resource consumption
does not violate the limits. However, the methods do not
provide any guarantees regarding the probability that a re-
source limit is violated during execution. In this section we
introduce a method which ensures that the probability of vio-
lating any individual constraint is upper bounded by a given
parameter α. First we use Hoeffding’s inequality to derive
tighter resource limits to bound violation probabilities. As
this bound is unnecessarily conservative, we then describe
a technique to iteratively relax it, resulting in policies with
higher expected value and constraint violation probabilities
closer to the given tolerance α.

Computing Resource Limit Reductions
We consider arbitrary constraints

∑n
i=1Ei,j,t ≤ Lj,t,

where Ei,j,t denotes the expected resource consumption
of agent i at time t for resource type j. In the CMDP for-
mulation this is the constraint

∑n
i=1

∑
s∈Si

∑
a∈Ai

xit,s,a ·
Ci,j(s, a) ≤ Lj,t, and in the master LP for column genera-
tion in Equation 4 this is the constraint

∑n
i=1

∑
πi∈Zi

Cj,ti,πi
·

xi,πi
≤ Lj,t. Our technique can be applied to any such con-

straint and thus to both CMDPs and Column Generation.
We introduce a reduced resource limit 0 ≤ L∗j,t ≤ Lj,t

such that the LP constraint becomes
∑n
i=1Ei,j,t ≤ L∗j,t.

Next, we define this reduced resource limit L∗j,t in such a
way that the original limit violation probability is bounded
by α. The proof relies on the fact that we can define the ac-
tual consumption of MDP Mi during execution as a random
variable 0 ≤ Xj,t,i ≤ cmax,i,j . The total consumption for
resource type j at time t then is their sum:

Xj,t = Xj,t,1 +Xj,t,2 + . . .+Xj,t,n, (7)

with an expected value of E[Xj,t] =
∑n
i=1Ei,j,t ≤ L∗j,t.

Since these random variables follow from executing policies
after these have been computed (either by the CMDP or the
Column Generation method), and each of the variables relate
to different agents executing their policies independently,



these random variables are independent. We can thus use
Hoefding’s inequality to bound the probability that the sum
of the random variables exceeds Lj,t (Hoeffding 1963).

Theorem 1. Given a resource type j and a timestep t for
which the reduced limit is defined by

L∗j,t = Lj,t −

√
ln(α) · (

∑n
i=1 (cmax,i,j)

2
)

−2
, (8)

it holds that P
(
Xj,t > Lj,t

∣∣ E[Xj,t] ≤ L∗j,t
)
≤ α.

Proof. Without loss of generality we assume that E[Xj,t] =

L∗j,t − θ = Lj,t − L̂j,t − θ for θ ≥ 0. Hoeffding’s in-
equality provides a bound on the probability that the sum
of n independent random variables deviates from its ex-
pectation (Hoeffding 1963). We use the relation Lj,t =

E[Xj,t] + L̂j,t + θ and Hoeffding’s inequality to derive the
following:

P
(
Xj,t > Lj,t

∣∣∣ E[Xj,t] = Lj,t − L̂j,t − θ
)

= P
(
Xj,t > E[Xj,t] + L̂j,t + θ

)
= P

(
Xj,t − E[Xj,t] > L̂j,t + θ

)
≤ exp

−2 ·
(
L̂j,t + θ

)2
∑n
i=1 (cmax,i,j)

2

≤ exp

 −2 ·
(
L̂j,t

)2
∑n
i=1 (cmax,i,j)

2

.
(9)

To ensure that the probability is upper bounded by α, we
need to find a reduction L̂j,t for which it holds that exp

(
−2 ·

(L̂j,t)
2 /

∑n
i=1 (cmax,i,j)

2)
= α. Rewriting this equality

yields the term L̂j,t that is subtracted in Equation 8.

Dynamic Constraint Relaxation
Hoeffding’s inequality bounds the constraint violation proba-
bility from above, and therefore the resulting resource con-
straint may be too conservative. This is due to the fact that
the inequality defines a general bound on the probability that
the sum of n independent random variables deviates from its
expectation, regardless of their distribution. In practice this
means that the bound can be relatively loose. We propose a
dynamic constraint relaxation technique which adjusts the
reduced resource limit L∗j,t on the basis of empirical evidence
of actual violations during simulation. Our technique adapts
the resource limits until the LP solution corresponds perfectly
with the desired violation probability.

We start with reduced resource limits L∗j,t obtained using
Hoeffding’s inequality, as shown in Equation 8, and com-
pute a policy for each agent, which can be done using either
CMDPs or Column Generation. After obtaining the policies
our algorithm runs m Monte Carlo trials to obtain an esti-
mate of the probability distribution of the actual resource
consumption. Figure 1 (left) illustrates such a probability
distribution, which also illustrates that the resource limit re-
duction obtained using Hoeffding’s inequality can be very
conservative. After estimating the distribution we determine

Fr
eq

ue
nc

y

L∗j,t Lj,t

Fr
eq

ue
nc

y

L∗j,t L̃j,t Lj,t

Figure 1: Relaxing the resource limit L∗j,t on the basis of an
empirical estimate of the distribution.

the limits L∗j,t ≤ L̃j,t ≤ Lj,t for which αm violations of the
true limit Lj,t occur, as illustrated in Figure 1 (right). In prac-
tice the distribution may change significantly by increasing
the limit. Hence, we propose to iteratively relax the resource
constraints as follows:

L0
j,t = L∗j,t,

Lγ+1
j,t =

(
Lγj,t + L̃j,t

)/
β.

(10)

where L̃j,t is determined based on Monte Carlo trials. The
auxiliary variable γ represents the iteration index and is used
to keep track of the previously chosen resource limit. The
parameter β controls the speed of the convergence.

The algorithm starts iteration γ = 0 with the resource
limits L0

j,t obtained using Equation 8. Based on these limits
it computes a policy for each agent, after which it executes
the Monte Carlo trials to obtain the limits L̃j,t. Finally, the
relaxed resource limits Lγ+1

j,t are computed. When starting
iteration γ + 1, the algorithm computes policies based on
the newly obtained resource limits, after which the entire
procedure starts again. This process is repeated until the
policies meet the desired violation tolerance α.

Approaching the ideal resource limit from below instead
of from above is preferable because in the worst case the
resource limit equals the limit obtained using Hoeffding’s in-
equality. Additionally, by relaxing constraints the LP solution
obtained in the previous iteration remains feasible, allowing
for efficient warm restarts. This is an anytime algorithm be-
cause we never tighten constraints, and thus every iteration
can only improve the expected value of the policies.

Accelerating the Column Generation Method
The Column Generation algorithm executes several iterations
when computing policies, and in each iteration it adds n
columns to the master LP, which correspond to the policies
of the agents. Unfortunately, the total number of columns in
the master LP grows very large during planning. As a conse-
quence, the time required to solve the master LP increases
during the execution of our algorithm. In the remainder of
this section we discuss a novel technique to prune columns
from the master LP to accelerate the algorithm. In contrast
to literature that mentions removing columns (e.g., Barnhart
et al. 1998), we also present necessary conditions and prove
that convergence of Column Generation is unaffected.

An LP solver makes the distinction between basic vari-
ables and non-basic variables (Papadimitriou and Steiglitz
1982). The basis of an LP corresponds to the set of basic



variables, having a value assigned that is non-zero. The non-
basic variables are not part of the basis and their value is
zero. Given an LP with g rows, the number of basic variables
is at most g. This means that any LP solution found during
Column Generation has many variables with zero probability
assigned, most of which will never enter the basis again.

We propose a subroutine to remove columns from the
LP. Column Generation requires an LP that has a feasible
solution at all times, and therefore we only remove columns if
it does not affect the feasibility of the LP. The LP is feasible if
there exists an assignment of probabilities to variables which
satisfies the constraints in the master LP. Non-basic variables
do not contribute to the objective value and can be removed
without changing the current solution of the master LP.

This pruning operation removes columns, which may af-
fect the convergence characteristics. However, we can pre-
serve convergence characteristics if pruning is only executed
under specific circumstances. We define φl,ρ as the lower
bound found in iteration ρ of Column Generation. If the prun-
ing operation is only executed after a strict increase of the
lower bound (i.e., φl,ρ > φl,ρ−1), then the algorithm still
converges, as shown below.

Theorem 2. Consider the lower bounds φl,ρ−1 and φl,ρ
found in two successive iterations ρ − 1 and ρ. Pruning
does not affect the feasibility of the master LP, and Column
Generation converges to an optimal solution if the pruning
subroutine is only executed in case φl,ρ > φl,ρ−1.

Proof. Pruning only removes columns corresponding to non-
basic variables, and removing such columns never affects
feasibility of a linear program. Now we will show that Col-
umn Generation combined with pruning still converges. We
let φ denote the optimal objective that needs to be found. The
number of distinct lower bounds φl is finite since each MDP
has a finite number of policies. Consider two iterations ρ− 1
and ρ for which φl,ρ > φl,ρ−1. The algorithm executes prun-
ing and may remove columns from the linear program, after
which it continues generating columns. Consider a lower
bound φl,ρ < φl,q ≤ φ for which q > ρ. The algorithm is
guaranteed to reach φl,q since it converges towards φ and
it only executes pruning when actually reaching φl,q. Since
the number of lower bounds is finite, the algorithm is also
guaranteed to reach a lower bound that is equal to φ.

Nevertheless, pruning all unselected columns can cause
recently used columns to be recomputed. Therefore, we retain
columns which have entered the basis in the past δ iterations.1

Experiments
To test our proposed algorithms, we compare with two state-
of-the-art off-line resource preallocation strategies: an op-
timal preallocation Mixed-Integer Linear Program (MILP,
Wu and Durfee 2010), and its Lagrangian Relaxation us-
ing a greedy strategy to obtain feasible allocations, called
LDD+GAPS (Agrawal, Varakantham, and Yeoh 2016). We
first evaluate performance on three problem domains to study

1See authors’ homepages for supplementary material on inte-
grating pruning in Column Generation and on the Lottery domain.

the robustness of the algorithms. Subsequently, we show the
performance benefit of column generation and pruning over
direct encoding as CMDP. We end with a scalability experi-
ment on a large-scale advertising domain.

In our graphs ‘CMDP’ refers to solving the problem us-
ing CMDPs without reduced limits. ‘Hoeffding (CMDP)’
combines CMDPs with reduced limits obtained through
Hoeffding’s inequality. ‘Dynamic’ combines constraint re-
laxation with either CMDPs or Column Generation with
Pruning (using cut-off δ = 50, CG). All LPs were solved
using Gurobi 7.0 on a 2.1Ghz quad-core i7. Parameter β was
determined to fit the domain, ranging from 3 (advertising) to
100 (lottery). As a rule, a problem with fewer agents requires
a higher β to avoid undershooting the tolerance α.

Hard Artificial Domain The Lottery problem1 has only 1
resource (the prize), which can be used by an agent in the
winning state to redeem a large reward. Which agent reaches
the winning state is determined by nature, however in ex-
pectation only 1 agent will reach the winning state. Off-line
coordination on this type of problem is very difficult because
the resource demand depends completely on stochastic tran-
sitions. Preallocation strategies can only nominate 1 agent
as the potential winner, which means that it can perform
arbitrarily worse than on-line coordination.

The leftmost column of Figure 2 presents the results of
all algorithms on Lottery. Expected values are normalized to
the CMDP policy, which returns the optimal expected value.
Frequency of violations is observed through 500,000 Monte
Carlo trials. We observe that the lottery problem is computa-
tionally easy to solve even for over 500 agents. As expected,
the obtained value decreases as 1

n for both preallocation
strategies (MILP and LDD+GAPS) in an equal manner. We
also observe that the Hoeffding bound is very conservative on
this problem, resulting in a low value and significantly less
violations than the tolerance α. Dynamic constraint relax-
ation on the other hand is able to obtain constant value with
a stable bounded constraint violation probability, both only
surpassed by the unbounded CMDP, illustrating the expected
trade-off between expected value and number of violations.

Two Benchmark Domains In the Thermostatically Con-
trolled Loads (TCL) problem (De Nijs, Spaan, and De Weerdt
2015), the planner is tasked with finding an activation sched-
ule for heating devices that maximizes comfort subject to a
power constraint. In the Mars rover Maze (Wu and Durfee
2010) the planner must assign a limited set of tools to explo-
ration rovers to maximize value of research tasks performed.
To explore the scalability of the algorithms, we increase the
number of agents while keeping the other dimensions con-
stant. Each TCL agent has 24 states and 2 actions, horizon
24 and 1 resource type (24 resources in total). Our Maze
problems have 26 states and 10 actions per agent, horizon 15,
and 3 resource types (resulting in 45 resource constraints).

The middle and right columns of Figure 2 compare the
algorithms on these respective problems. We observe that the
TCL problem is computationally hard for the preallocation
strategies. Both MILP and LDD+GAPS exceed the 1 hour
timeout for 4 agents. The Hoeffding bound is less conserva-
tive here, but it still comes an order of magnitude short of the



Algorithm MILP LDD+GAPS CMDP Hoeffding (CMDP), α = 0.05 Dynamic (CMDP), α = 0.005 Dynamic (CG), α = 0.005

100

1

2

4

8

16

32

64

E
x

p
. 

V
al

u
e 

(%
)

Lottery
100

8

16

32

64

TCL, h = 24 Maze, 5 × 5

0.005

0.050

0.500
1.000

V
io

la
ti

o
n

s 
(p

)

0.005

0.050

0.500
1.000

10−2

10−1

100

101

102

103

104

8 16 32 64 128 256 512

Num. Agents

R
u

n
ti

m
e 

(s
.)

10−2

10−1

100

101

102

103

104

4 8 16 32 64 128 256

Num. Agents

4 8 16 32 64 128

Num. Agents

Figure 2: Comparison of algorithm performance on three problem domains. Policy value normalized to CMDP solution. All
graphs set on log-log scales.

target tolerance. Dynamic constraint relaxation approaches
the (stricter) tolerance and additionally obtains a higher value.
We observe that for large numbers of agents, the value of the
bounded approaches tends towards the optimal value. When
more agents are available to spread the load of the reduced
resource limit, their individual rewards are compromised less.

In the TCL domain agents are penalized for consuming
too many resources, because their temperature would exceed
their setpoint. In contrast, for Maze domain agents using more
resources is strictly better than using less. This translates into
a higher violation probability for the CMDP approach, and an
easier problem in general as observed by the better scalability
of the preallocation approaches. Nevertheless, for a sufficient
number of agents our dynamic constraint relaxation obtains
an expected value not significantly lower than the CMDP
approach with two orders of magnitude fewer violations.

Column Pruning Performance To demonstrate the im-
pact of pruning on the performance of Column Generation,
and to compare this approach with CMDPs, we present re-
sults on larger TCL instances (100 agents, 80 states, up to 128
hours instead of 24) in Figure 3. Here the problem is scaled
by increasing the planning horizon. Increasing the number of
time steps corresponds to increasing the number of resource
constraints in the model, which results in larger columns in
the linear program. We observe that as the horizon increases,
TCL problems quickly become intractable unless pruning is
used. In particular, CMDPs appear to suffer dramatically.

Large-scale Advertising Domain Using column pruning,
we are able to tackle large-scale planning problems, such as
the synthetic advertising domain presented by Boutilier and
Lu (2016). Their domain consists of assigning advertisement
budget to potential customers to maximize the amount of
sales, where each individual customer is modeled as an MDP.
In this domain the resource constraint is not time-dependent,

Algorithm CMDP CG (no pruning) CG

101

102

103

104

32 64 128

Horizon

R
u
n
ti

m
e 

(s
)

TCL, n = 100

Figure 3: Comparison of CMDPs with Column Generation,
including runtime benefit as a consequence of pruning.

but applies to all time steps. Because of the scale of the model
(1000 agents, each with 15 states and 5 actions), direct ap-
plication of the CMDP algorithm is intractable. Additionally,
the preallocation strategies can not be applied to this problem
because of non-binary resource consumption. However, as
Figure 4 shows, using Column Generation with pruning it
is possible to solve this problem in less than a second (both
with and without Hoeffding). We see that the version without
constraint reductions violates the selected budget level half
of the time. The Hoeffding bound, however, is again very
conservative, because of the large potential maximum con-
sumption relative to the expectation. This is addressed by the
dynamic constraint relaxation method, which reduces viola-
tions significantly compared to the version without constraint
reductions. We also observe that there is only a very small
reduction in expected value compared to the solution without
a bound on the violation probability.



Algorithm
CG
Hoeffding (CG), α = 0.05

Dynamic (CG), α = 0.05

Dynamic (CG), α = 0.1

5000

10000

15000

20000

25000

30000

E
x
p
. 
V

al
u
e

Synthetic Advertising, n = 1000, h = 50

0.05

0.10

0.50

1.00

V
io

la
ti

o
n
s 

(p
)

10−2

10−1

100

101

102

0 2000 4000 6000 8000 10000 12000 14000

Budget

R
u
n
ti

m
e 

(s
.)

Figure 4: Scalability of Column Generation with dynamic
constraint relaxation on a large-scale advertising domain.

Conclusions
We study multiple agents in stochastic domains that need to
coordinate their actions off-line due to limited availability
of resources and lack of communication. CMDPs and Col-
umn Generation algorithms compute policies which satisfy
resource constraints in expectation, but these policies provide
no guarantees on the probability that constraint violations oc-
cur. We therefore propose a new method to bound constraint
violation probabilities. Our method is based on Hoeffding’s
inequality and uses a dynamic constraint relaxation tech-
nique to ensure that constraint violation probabilities are
tightly bounded by a given tolerance. Policies computed by
our method ensure bounded constraint violation probabilities,
even if these policies are executed independently without
communicating. Since Column Generation has several at-
tractive properties when combining it with our method, we
introduced a column pruning technique to accelerate the al-
gorithm. Experiments on hard instances and more realistic
problems have shown that our method outperforms two ex-
isting state-of-the-art methods for computing deterministic
resource allocations.

Studying how constraints on violation probabilities can be
encoded directly in a linear program is an interesting future
work, because it yields non-convex problem formulations.
Secondly, column generation techniques have also been used
to solve large security games (Jain et al. 2010), and it remains
to be studied if column pruning also further accelerates these
and other algorithms based on column generation.

Acknowledgments
This research is funded by distribution system operator Al-
liander, and by the Netherlands Organisation for Scientific

Research (NWO), as part of the Uncertainty Reduction in
Smart Energy Systems program. We would like to thank
Pritee Agrawal for the information about LDD+GAPS, and
Craig Boutilier for the description of the advertising domain.

References
Agrawal, P.; Varakantham, P.; and Yeoh, W. 2016. Scalable
Greedy Algorithms for Task/Resource Constrained Multi-
Agent Stochastic Planning. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence, 10–16.
Altman, E. 1999. Constrained Markov Decision Processes.
CRC Press.
Barnhart, C.; Johnson, E. L.; Nemhauser, G. L.; Savelsbergh,
M. W.; and Vance, P. H. 1998. Branch-and-price: Column
generation for solving huge integer programs. Operations
research 46(3):316–329.
Bellman, R. 1957. A Markovian Decision Process. Journal
of Mathematics and Mechanics 6(5):679–684.
Boutilier, C., and Lu, T. 2016. Budget Allocation using
Weakly Coupled, Constrained Markov Decision Processes.
In Proceedings of the 32nd Conference on Uncertainty in
Artificial Intelligence, 52–61.
De Nijs, F.; Spaan, M. T. J.; and De Weerdt, M. M. 2015. Best-
Response Planning of Thermostatically Controlled Loads
under Power Constraints. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, 615–621.
Hoeffding, W. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American Statisti-
cal Association 58(301):13–30.
Jain, M.; Kardes, E.; Kiekintveld, C.; Ordónez, F.; and Tambe,
M. 2010. Security Games with Arbitrary Schedules: A
Branch and Price Approach. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence, 792–797.
Liang, D., and Wilhelm, W. E. 2010. A generalization of
column generation to accelerate convergence. Mathematical
programming 122(2):349–378.
Meuleau, N.; Hauskrecht, M.; Kim, K.; Peshkin, L.; Kael-
bling, L. P.; Dean, T.; and Boutilier, C. 1998. Solving Very
Large Weakly Coupled Markov Decision Processes. In Pro-
ceedings of the 15th National Conference on Artificial Intelli-
gence, 165–172.
Papadimitriou, C. H., and Steiglitz, K. 1982. Combinatorial
Optimization: Algorithms and Complexity. Courier Corpora-
tion.
Vanderbeck, F. 2005. Implementing mixed integer column
generation. In Desaulniers, G.; Desrosiers, J.; and Solomon,
M. M., eds., Column Generation. Boston, MA: Springer US.
331–358.
Wu, J., and Durfee, E. H. 2010. Resource-Driven Mission-
Phasing Techniques for Constrained Agents in Stochastic
Environments. Journal of Artificial Intelligence Research
38:415–473.
Yost, K. A., and Washburn, A. R. 2000. The LP/POMDP
Marriage: Optimization with Imperfect Information. Naval
Research Logistics 47(8):607–619.


