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Abstract

In many planning domains external factors are
hard to model using a compact Markovian state.
However, long-term dependencies between con-
secutive states of an environment might exist,
which can be exploited during planning. In
this paper we propose a scenario representation
which enables agents to reason about sequences
of future states. We show how weights can
be assigned to scenarios, representing the likeli-
hood that scenarios predict future states. Further-
more, we present a model based on a Partially
Observable Markov Decision Process (POMDP)
to reason about state scenarios during planning.
In experiments we show how scenarios and our
POMDP model can be used in the context of
smart grids and stock markets, and we show that
our approach outperforms other methods for de-
cision making in these domains.

1 INTRODUCTION

The Markov Decision Process (MDP) formalism is a math-
ematical framework for modeling agents interacting with
their environment (Puterman, 1994). In many real-world
planning domains, however, external factors can be diffi-
cult to predict, which makes it hard to obtain a Markovian
model with the right state features and an appropriate level
of detail (Witwicki et al., 2013). In such domains, it is
hard to estimate probabilities for the occurrence of uncer-
tain events, and therefore decision making can be a chal-
lenging task.

An example of a hard-to-model external factor is renewable
energy supply such as generation of wind power. Research
has shown that the most severe problems in electricity grids
occur during peak-load hours when energy demand is high
and wind power generation is interrupted (Moura and De
Almeida, 2010), because then the supply of renewable elec-

tricity may not be sufficient to satisfy the demand of con-
sumers. A potential solution is exploiting the flexibility of
the loads of consumers, such that they can be supplied dur-
ing off-peak hours. This solution requires reasoning about
future wind speed, but many external factors influencing
wind make it hard to define a compact Markovian state
for wind. Additionally, methods to predict short-term wind
power are affected by errors and may be inaccurate (Giebel
et al., 2011).

In order to accommodate planning in domains with events
that are difficult to predict and hard to model, we propose a
framework that enables agents to reason about future states.
This approach is based on the observation that there can
be long-term dependencies between states, which can be
exploited during planning, rather than explicitly defining
a state transition model with appropriate features. In our
framework, such long-term dependencies are modeled by
scenarios, which are sequences of states. An advantage of
using scenarios is illustrated in Figure 1, in which we com-
pare wind predictions generated by a second-order Markov
chain and actual wind scenarios that have been observed in
practice. The lines in the figure visualize the 5th percentile,
mean and 95th percentile of these predictions, and show us
that scenarios provide information that is not sufficiently
modeled by a second-order Markov chain.

In our work we assign weights to scenarios, corresponding
to the likelihood that a scenario predicts future states accu-
rately, and we use the Partially Observable Markov Deci-
sion Process framework (Kaelbling et al., 1998) to reason
about scenarios during planning. We demonstrate the pro-
posed Scenario-POMDP model in two domains. Besides
wind scenarios in smart grids, we show how a Scenario-
POMDP can be applied to financial stock markets. This
domain has also been subject of study in the artificial intel-
ligence community, since stock price is hard to model and
depends on many external factors (Hassan and Nath, 2005).
An experimental evaluation shows that our method outper-
forms other methods for decision making in both domains,
indicating that scenarios are a valuable representation to
model uncertainty regarding the future.
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Figure 1: Comparison between Markov chain wind predic-
tions and realistic wind scenarios starting from 51 km/hr.

The structure of this paper is as follows. Section 2 intro-
duces planning under uncertainty. In Section 3 we intro-
duce scenarios and related concepts. In Sections 4 and 5 we
show how planning with scenarios can be applied to smart
grids and stock markets. In the remaining sections we dis-
cuss related work, conclusions and future work. In the sup-
plementary material we provide problem formulations and
additional information regarding the problem domains.

2 PLANNING UNDER UNCERTAINTY

Planning under uncertainty involves agents that interact
with their environment by executing actions, and observ-
ing effects caused by these actions. This is a challeng-
ing problem if agents are uncertain about the outcome of
their action execution, and if they cannot fully observe the
environment they are acting in. The Partially Observable
Markov Decision Process (POMDP) formalism provides a
framework to plan in such uncertain environments (Kael-
bling et al., 1998).

In a POMDP, it is assumed that the environment is in a
state s ∈ S. After executing an action a ∈ A in state s, the
state of the environment transitions to another state s′ ∈ S
according to probability distribution P (s′|s, a) and a re-
ward R(s, a) is received from the environment. A state
transition from s to s′ is only conditionally dependent on
state s and action a, which is called the Markov prop-
erty. In contrast to MDPs with full observability (Puter-
man, 1994), the agent does not directly perceive the state
of the environment in a POMDP. It receives an observa-
tion o ∈ O that can be used to reason about the underlying
MDP state of the environment, using a probability distribu-
tion P (o|a, s′). Since states are not directly observable in
a POMDP, agents maintain a belief state, denoted b, which
represents a probability distribution over states. The result-
ing belief state boa after executing action a and observing o
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Figure 2: An agent executing action a, which causes a state
transition to m′, and the agent receives state observation ot
from the scenario process at time t and receives reward R.

in belief state b can be determined using Bayes’ rule:

boa(s
′) =

P (o|a, s′)
P (o|a, b)

∑
s∈S

P (s′|s, a)b(s)

whereP (o|a, b) =
∑
s′∈S P (o|a, s′)

∑
s∈S P (s

′|s, a)b(s).
The state space S, action space A and observation space O
are assumed to be finite in this paper.

To act in a partially observable environment, agents use a
policy π(b), which maps belief states to actions. A pol-
icy π(b) is characterized by a value function V π(b) defin-
ing the expected discounted reward collected by the agent
when executing policy π from belief state b. The optimal
value function V ∗(b) is defined as:

V ∗(b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

P (o|a, b)V ∗(boa)

]

where boa is defined by Bayes’ rule, and γ is a discount
factor satisfying 0 ≤ γ < 1. Computing exact solu-
tions to POMDPs is known to be intractable (Papadim-
itriou and Tsitsiklis, 1987), but many approximate meth-
ods exist based on point-based value iteration (Pineau et
al., 2003; Spaan and Vlassis, 2005). In this paper we use
POMCP (Silver and Veness, 2010), an online Monte-Carlo
planning algorithm that is capable of dealing with a large
number of states. We assume the planning horizon to be
finite.

3 PLANNING WITH SCENARIOS

In this section we propose a scenario representation for
planning under uncertainty. First we introduce the notion
of scenarios and we explain how scenarios can be weighted
based on previous observations. We also present a general
POMDP model to reason about scenarios and future states
during planning.

3.1 SCENARIOS AND WEIGHTS

We assume that an agent interacts with an environment as
shown in Figure 2. The environment consists of a process



input : observation sequence o1,t, scenario set X ,
threshold ρ

output: weights w

X ′ ← ∅
d← 0
while |X ′| < ρ do

X ′ ← {x ∈ X :W (x, o1,t) ≤ d}
d← d+ 1

end
foreach x ∈ X do

if x ∈ X ′ then
wx ← 1 / (ε+W (x, o1,t))

else
wx ← 0

end
end
w∗ ←

∑
x∈X wx

foreach x ∈ X do
wx ← wx / w

∗

end
Algorithm 1: WEIGHTS.

for which the domain-level state changes to m′ after ex-
ecuting an action. For simplicity, in this paper we assume
that the state of this process is observable, but our approach
is not limited to this assumption. Additionally, there is an-
other process for which a compact Markovian model does
not exist, called the scenario process. We assume that an
agent observes a numerical-valued state ot of this process
at time t, which we call a state observation, but there is no
model available defining the state transitions. The actions
executed by the agent do not influence the state transitions
of the scenario process. We assume that the rewards re-
ceived by the agent depend on the statem, as well as on the
state of the scenario process, which means that the agent
has to account for future states to optimize the long-term
reward.

In order to be able to reason about future states, we propose
a scenario representation below. A scenario is a sequence
of states of the scenario process, and implicitly models the
dependencies between multiple consecutive states.

Definition 1. (Scenario). A scenario x = (x1, . . . , xT ) is a
sequence of states of the scenario process for T consecutive
timesteps, where xt is the state at time t. The sequence
containing the first t states of scenario x is denoted by x1,t.

States of the scenario process are assumed to be directly ob-
servable, represented by a sequence o1,t = (o1, o2, . . . , ot),
containing state observations from the first t timesteps. The
sequence of state observations can be compared to a sce-
nario, by comparing the individual state observations with
states in the scenario. We illustrate this with a small ex-
ample for the scenario x = (x1, x2, x3, x4) = (8, 5, 3, 2).
Suppose that the state observations are defined by the se-
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Figure 3: Scenarios and state observations until time t.

quence (o1, o2, o3) = (8, 5, 4), then the first and second
state observation are identical to the first two states defined
by scenario x, and the third state observation is different.

Weights can be assigned to scenarios, representing the like-
lihood that a scenario perfectly predicts the states that will
be observed in the future. To reason about future states,
we assume that a large scenario set X is given, contain-
ing sequences of states that can be observed in T consecu-
tive timesteps. If a sequence of states o1,t is observed until
time t, then the sequence can be used to assign weights to
the scenarios in X . In Sections 4 and 5 we discuss how
such a scenario set can be obtained in realistic domains.

An informal visual representation of scenarios is shown in
Figure 3. It shows four scenarios, labeled 1 to 4, and the
state observation sequence o1,t. As can be seen in the fig-
ure, the state observation sequence does not correspond to
any scenario until time t, but it is very similar to scenario 3.
If X is an accurate set of scenarios, then it is probable that
scenario 3 predicts future states. Therefore, the weight as-
signed to this scenario should be high in comparison to the
weights assigned to other scenarios.

The weights assigned to scenarios are inversely propor-
tional to the distance between scenarios and the state ob-
servation sequence. The distance between state observation
sequence o1,t = (o1, o2, . . . , ot) and the first t states of a
scenario x ∈ X can be measured by computing the sum
of squared errors. The function W below computes this
distance for a given scenario x ∈ X and state observation
sequence o1,t:

W (x, o1,t) =

t∑
i=1

(oi − xi)2.

We select scenarios up to a certain distance from the state
sequence until time t, and we assign weights to the scenar-
ios such that they sum to 1. The algorithm that we use to
assign weights is shown in Algorithm 1. It selects a sub-
set of scenarios X ′ containing at least ρ scenarios similar
to o1,t, based on the sum of squared errors. This step en-
sures that there is a sufficient number of scenarios with non-
zero weight, to prevent that the future is predicted by only
one or very few scenarios. A probability distribution is de-
fined over the scenarios in X ′, in which the probabilities
are inversely proportional to the computed distance. A nor-
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Figure 4: General dynamic Bayesian network of the
Scenario-POMDP model.

malization step is performed to ensure that the sum of the
probabilities equals 1. The parameter ρ can be adjusted to
lower-bound the number of scenarios with non-zero proba-
bility.

3.2 SCENARIO-POMDP MODEL

In this section we present a POMDP model, which we can
use to model any planning problem with the type of agent-
environment interaction outlined in the previous section.
The model can be used to reason about future states of a
scenario process during planning, such that agents can rea-
son about future states to optimize the long-term reward.

We present a POMDP model with factored states, as shown
in the dynamic Bayesian network in Figure 4. Before ex-
plaining the Scenario-POMDP model in detail, we formal-
ize it below.

Definition 2. (Scenario-POMDP). A Scenario-POMDP is
a POMDP in which each state s ∈ S can be factored into
a tuple s = (m,x, t), where m is the domain-level state of
the environment, x ∈ X is a scenario and t is a time index.
A Scenario-POMDP has the following properties:

1. The scenario state variable x is partially observable,
and state variables t and m are observable1. In
state s = (m,x, t), observation xt is observed with
probability 1, determined by x and t.

2. The transitions of m are determined by a predefined
transition function. State variable t is always incre-
mented by 1 after executing an action. The scenario
state variable x is fixed.

3. The reward received in state s = (m,x, t) depends
on xt, defined by variable x and variable t, and de-
pends on domain-level state m and action a.

A Scenario-POMDP models problems in which the interac-
tion with the environment is represented by an MDP defin-
ing the domain-level actions and states, but the rewards also

1The Scenario-POMDP model can also be used if m is par-
tially observable, which requires factored observations.

input: initial domain-level state m0, horizon T , scenario
set X , threshold ρ

m← m0

for t = 1, . . . , T do
ot ← state of scenario process
o1,t ← (o1, . . . , ot)
w ←WEIGHTS(o1,t, X, ρ)
a← POMCP(m,w, t)
execute action a
m← state obtained after executing a in state m

end
Algorithm 2: Scenario-POMCP.

depend on the state of the scenario process. Actions only
affect the domain-level statem, and we assume that they do
not influence the state transitions of the scenario process.

The state variable m represents the domain-level state of
the environment, and the actual definition of m is depen-
dent on the problem domain, as we will show later. The
state variable x represents a scenario, where the scenario is
a sequence of states as introduced in Definition 1. A sce-
nario defines the state observations to be made in future
timesteps, and therefore the scenario x is considered to be
partially observable. A scenario cannot be fully observable,
because this would imply that there is prior knowledge re-
garding future states of the scenario process. In this pa-
per x denotes both a scenario and scenario state variable,
but this makes the explanations more intuitive and clear.
The state variable t is a variable representing the current
timestep, and is fully observable. The Scenario-POMDP
model can be considered as a MOMDP, which is a subclass
of POMDPs for problems with mixed observability (Ong
et al., 2010).

The observations in a Scenario-POMDP are exclusively de-
termined by the factored state variables x and t. For sce-
nario variable x and time variable t, the observation re-
ceived by the agent is the observation at time t in sce-
nario x. Suppose that the scenario x is (6, 9, 12) and the
time state variable equals 2, then the agent will receive ob-
servation 9. This explains how the observations in Figure 4
depend on the scenario variable x and time variable t.

An action a, represented by the square in the figure, only
affects the domain-level state m and does not influence the
scenario x. For each action, the reward R is dependent on
the domain-level state of the environment, as well as the
observed state of the scenario process, defined by scenario
state variable x and time variable t.

3.3 PLANNING FOR SCENARIO-POMDPs

We present a general planning algorithm, called Scenario-
POMCP, for planning problems that can be formulated as
a Scenario-POMDP. The description of the algorithm is



Table 1: Task Scheduling State Variables.

VARIABLE DESCRIPTION

mi
s state of task i, for i = 1, . . . , n

ma ∈ {1, . . . , n} agent owning the token
x ∈ X scenario
t ∈ {1, . . . , T} time

shown in Algorithm 2. The initial domain-level state m0,
time horizon T , scenario set X and threshold ρ are given
as input. The state observations ot are used to define o1,t
and Algorithm 1 is used as a subroutine to assign weights to
scenarios inX . The POMCP algorithm (Silver and Veness,
2010) is used as planning algorithm, which is an online
planning algorithm for POMDPs based on Monte-Carlo
tree search. This algorithm receives m, w and t as input,
and samples scenarios from X with a probability propor-
tional to their weight in the vector w. We use POMCP
because this algorithm can be adapted to sample scenar-
ios based on weights, rather than sampling states from a
belief state, and the algorithm is able to deal with a large
number of states. The latter is relevant since the number of
states of a Scenario-POMDP may grow very large. Even-
tually our algorithm executes the resulting action a before
proceeding to the next timestep. At any timestep a new
POMCP search tree is created, because there is no explicit
link between the weights of consecutive timesteps. More
implementation details are provided in the supplementary
material.

4 SCENARIOS IN SMART GRIDS

In this section we formulate matching of demand with re-
newable supply in smart grids as a Scenario-POMDP, and
we run simulations to compare the performance with other
methods.

4.1 BACKGROUND

We consider n power demanding tasks, denoted by J =
{j1, . . . , jn}, where each task ji is parameterized by a du-
ration li, release time ri, deadline di and power demand pi.
Hence, we define each task ji as a tuple ji = (li, ri, di, pi).
A task is not allowed to start before its release time, must
be finished by the deadline and cannot be preempted. The
power demand pi of task ji represents the demand per
timestep, which means that the total power consumption
of task ji equals li · pi.

There are two electricity sources: renewable energy derived
from wind and conventional generation from the electricity
grid. The available supply of conventional generation is as-
sumed infinite and there is a cost function c(u) defining the
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Figure 5: Dynamic Bayesian network of the Scenario-
POMDP for task scheduling.

cost of consuming u units from the grid. We assume that re-
newable energy supply per timestep is finite, has zero cost
and cannot be stored to be used in subsequent timesteps.
The amount of renewable supply generated by wind is rep-
resented by a scenario x = (x1, x2, . . . , xT ) defining the
number of units available at each timestep, where T is the
time horizon.

A schedule S = (h1, . . . , hn) defines for each task ji a
starting time hi satisfying the following conditions:

hi ≥ ri, hi + li − 1 ≤ di, (i = 1, . . . , n).

The first condition states that task ji cannot start before
its release time ri and the second condition defines that
task ji cannot run after the deadline di. The total de-
mand D(S, t) of a schedule S = (h1, . . . , hn) at time t
is defined as D(S, t) =

∑n
i=1 IS(i, t) · pi, where IS(i, t)

is an indicator function that equals 1 if task ji runs at
time t in schedule S, and equals 0 otherwise. The number
of required grid units US,x for schedule S and fixed sce-
nario x = (x1, x2, . . . , xT ) can be computed as follows:

US,x =

T∑
t=1

max (D(S, t)− xt, 0) .

The cost function c(US,x) is used as an objective function
to be minimized, in order to match demand and the renew-
able supply defined by the scenario.

4.2 SCENARIO-POMDP FORMULATION

We formulate the problem to start and defer tasks as a plan-
ning problem, in which we assume that an agent is associ-
ated with each task. A scenario x = (x1, . . . , x24) is a
sequence of wind state observations, where each xi corre-
sponds to the wind speed measured during hour i. The time



horizon T is equal to 24. Available renewable supply gen-
erated by wind is observed during the day, and the cost of
running a task depends on the supply from wind and the
decisions made for other tasks.

The problem is formulated as a Scenario-POMDP, using
the factored state variables in Table 1. The state vari-
ables ms,1, . . . ,ms,n define the states of the individual
tasks, which encode properties such as release time, dura-
tion and deadline. The state variable ma represents which
agent is allowed to make a decision, which is used to re-
duce the size of the action space. More details are pro-
vided in the supplement. The factored state description
is also visualized as a dynamic Bayesian network in Fig-
ure 5, which shows the correspondence with the Scenario-
POMDP model in Figure 4.

An agent is able to execute two different actions: RUN and
IDLE, corresponding to either running a task at a certain
timeslot or doing nothing. The rewards are equal to the
cost of running a task, multiplied by −1, which leads to
a higher penalty if costly conventional generation is used.
The observations automatically follow from the Scenario-
POMDP model, as explained in Section 3.

4.3 EXPERIMENTS

In the experiments we run simulations to compare the pro-
posed Scenario-POMDP formulation with other methods.
We obtained historical hourly wind data from the Sotavento
wind farm located in Galicia, Spain for 1708 days in the pe-
riod from October 2008 until May 2013.2 We consider the
dataset as a long vector defining wind for 1708 consecu-
tive days of 24 hours each, in which wind is measured in
km/hr. For each subsequence of 24 hours, we define a sce-
nario x = (x1, . . . , x24), which yields 40969 scenarios in
total. In order to discretize the observation space, we round
wind speed values to the nearest integer. The generated
power Z(x, t) at time t in scenario x can be derived using
a sigmoid power curve:

Z(x, t) = C · (1 + e6−
2
3xt)−1

where C is a variable to define the capacity of the genera-
tor (Robu et al., 2012). For each task scheduling instance,
we choose a scalar C such that Z(x, t) =

∑n
i=1 li · pi,

which ensures that the total demand equals the available
renewable supply.

We evaluate our planning algorithm on 200 task schedul-
ing instances. Each instance consists of a set containing 6
tasks: J = {j1, j2, . . . , j6}. We assign a duration between
3 and 7 to each task ji, and a release time between 8 and
12, both sampled uniformly at random. The release times
represent that tasks are released between 8AM and noon.
The deadline di is set after 24 hours, to ensure that tasks

2Consult www.sotaventogalicia.com for details.
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Figure 6: Performance comparison between planning with
scenarios and other methods, without outliers.

Table 2: Statistics for Smart Grids Experiment 1.

CONS. MDP POMCP 1 POMCP 2

Mean 1.33 1.15 1.05 1.23
Std 0.44 0.21 0.12 0.25
Max 4.22 2.55 2.07 2.84

have finished by the end of the day. The power demand pi
equals 10 for each task, such that running tasks require 10
units at each timestep. The cost of consuming one unit from
the grid is assumed to be 1. To define the renewable supply
that is available during the day in each experiment, we sam-
ple an observation sequence from the scenario set. Days in
which the renewable supply is relatively flat contain lim-
ited uncertainty. Therefore, we select scenarios where the
renewable supply from time 1 to 6 and from time 13 to 18
is higher than the supply during the remaining hours. This
guarantees that the renewable supply is unstable and varies
during the day.

In our experiments we aim to compare the performance
of Scenario-POMCP with the cost of optimal omniscient
schedules. These assume that the supply throughout the
day is known, which is a lower bound on the performance.
We use mixed-integer programming with a 1 percent MIP
gap to compute this for each instance. The scenario-based
POMCP planner runs 200 iterations with an ε-greedy ex-
ploration strategy, in which the probability to select ran-
dom actions decreases linearly from 1 to 0, and threshold ρ
in the weight computation equals 10. Additionally, we run
an MDP planner that is based on Monte-Carlo tree search,
and we also compare with a consensus task scheduling al-
gorithm (Ströhle et al., 2014). More implementation de-
tails, and additional information regarding the consensus
algorithm, are provided in the supplement.

The results of our comparison are shown in Figure 6, in
which we show the performance relative to the cost of the
optimal omniscient schedules. The cost of the optimal om-
niscient schedules is represented by 1, and the distributions
show the performance relative to this cost. For example, if
the cost is 1.2, this means that the cost is 20 percent higher
than the cost of an optimal omniscient schedule. For read-
ability reasons outliers have been omitted in the figure, and
therefore additional statistics are provided in Table 2.
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Figure 7: Cost increase for increasing probability to ex-
clude the state observation sequence from X .

Table 3: Statistics for Smart Grids Experiment 2.

0.0 0.2 0.4 0.6 0.8 1.0

Mean 1.05 1.10 1.17 1.20 1.27 1.23
Std 0.12 0.21 0.35 0.37 0.38 0.25
Max 2.07 2.77 4.19 4.19 4.19 2.84

From the results we can conclude that the MDP planner
performs slightly better than the consensus planner. For
Scenario-POMCP we ran the algorithm with two different
configurations. The column labeled POMCP 1 represents
the case in which the observed state scenario is already
present in the scenario set X , and then it performs much
better than other methods. The column labeled POMCP 2
shows the results for the experiment in which the observed
state scenario is never present in the set X . In those cases
the performance is slightly worse, but still competitive with
other methods.

In practice it can be expected that accurate scenario sets
can be obtained from large historical datasets, and it is un-
likely that the observed state scenario is never present inX .
Therefore, we did an additional experiment in which the
observed state scenario is excluded from X with a certain
probability. This means that the algorithm sometimes en-
counters known scenarios, and in other cases the observed
scenario is new. The results are shown in Figure 7 and Ta-
ble 3, from which we can conclude that the performance of
Scenario-POMCP is better if it is more likely that the ob-
served state sequence is already part of the set. Therefore,
better performance can be obtained by having a scenario
set that covers all possible sequences of states accurately.

Our experiments make clear that the Scenario-POMDP
model can be used for matching demand and uncertain sup-
ply in the smart grids domain. Additional results can be
found in previous work (Walraven and Spaan, 2015).

5 SCENARIOS IN OPTION TRADING

In this section we show how scenarios can be used in finan-
cial stock markets.

5.1 BACKGROUND

A popular type of financial option is the European call op-
tion. This option gives the holder the right, but not the
obligation, to buy a share at a prescribed point in time for a
prescribed price regardless of the stock price. A European
call option is parameterized by a strike price E and expiry
date H , giving the holder the right to pay E for a share at
time H . The value of the European call option at time H
is max(S(H)−E, 0), where S(H) denotes the stock price
at time H . If the strike price is lower than the stock price
at expiry, the option holder can earn money by buying a
share and selling it immediately on the market. If the strike
price is higher, then the trader cannot gain anything. The
value of a European call option can be determined using
the Black-Scholes equation (Black and Scholes, 1973), for
which a description is provided in the supplement. Reason-
ing about the future is necessary during trading, because if
the stock price drops an option may become worthless.

5.2 SCENARIO-POMDP FORMULATION

We formulate buying and selling call options as a single-
agent planning problem. A scenario x = (x1, . . . , xt) is
defined as a sequence of stock price values, where xi is
the stock price observed at time i. We assume that there is
an agent observing the market, and depending on the stock
price it may decide to buy a call option, and if it owns a
call option the agent may decide to sell the option to make
profit. There is one type of call options the agent can buy. If
the current stock price is j, the agent can buy a call option
that expires after 10 days, with strike j.

The planning problem can be defined as a Scenario-
POMDP, and we formulate the problem using the factored
state variables in Table 4. The scenario variable x and time
variable t are identical to the state variables x and t in a
Scenario-POMDP, and they define the observations. The
state variables mo, me and mt represent the current state
of the option portfolio of the agent. The variablemo can be
either true (T) or false (F), representing whether the agent
currently owns a call option or not. If the agent owns a call
option, the strike price of the option is represented by state
variable me, and state variable mt represents the number
of days until expiry. The factored variables mo, me and
mt together define the state m of the option portfolio. The
factored state description is also visualized as a dynamic
Bayesian network in Figure 8, which shows the correspon-
dence with the Scenario-POMDP model in Figure 4.

The agent can execute three different actions: BUY, SELL
and NOOP. The action NOOP represents doing nothing,
and the actions BUY and SELL correspond to buying and
selling an option. The agent must sell once the option has
expired. The rewards correspond to either paying a certain
amount of money, or receiving a certain amount of money.
The agent always pays the Black-Scholes value of the op-



Table 4: Option Trading State Variables.

VARIABLE DESCRIPTION

mo ∈ {T,F} represents whether agent owns a call
me ∈ N strike price of the call
mt ∈ {0, . . . , 9} time to expiry
x ∈ X scenario
t ∈ {1, . . . , T} time
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Figure 8: Dynamic Bayesian network of the Scenario-
POMDP for option trading.

tion when buying an option, and receives the Black-Scholes
value of the option when selling the option. The obser-
vations automatically follow from the Scenario-POMDP
model, as explained in Section 3. A full description of the
state transitions and rewards can be found in the supple-
ment.

5.3 EXPERIMENTS

We did several experiments to evaluate the performance of
the option trading agent on realistic data. To be able to
reason about the stock price in the future, we obtained the
historical daily close price values to build realistic scenario
sets for shares in companies A and B. For company A, we
use the data from January 2, 2001 to December 8, 2010,
and for company B we use the data from September 27,
2000 to September 12, 2008. The stock price values are
discretized, such that each price is a natural number. We
enumerated subsequences of length 40 from the datasets to
create a scenario set for each company.

To evaluate the performance, we simulate the stock mar-
ket for each company for a period of at least 1000 days,
with historical data that is more recent than the datasets
we used to create the scenario set, which ensures that both
datasets are distinct. For company A we simulate the stock
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Figure 9: Account balance during simulations for com-
pany A (top) and company B (bottom).

price from December 9, 2010 to December 1, 2014. For
company B we simulate the stock price from September
15, 2008 to February 20, 2015. We measured the average
historical volatility using an Exponential Weighted Mov-
ing Average approach (Higham, 2008), and based on that
we assume that the volatility of the market equals 0.4. The
annual interest rate is assumed to be 0.03.

Our scenario-based agent uses Scenario-POMCP to select
actions, which is implemented with a rolling time horizon.
In our experiment the number of POMCP search iterations
is set to 200, and the parameter ρ is equal to 10. POMCP
uses UCB (Auer et al., 2002) as action selection heuristic
with parameter 100 for company A and parameter 40 for
company B.

In our experiments we aim to show that our method based
on scenarios trades better than other methods. We can do
this by keeping track of the account balance during the sim-
ulations, and we expect that an agent using the scenario
planner earns more money than other methods. We also im-
plemented an agent that is trading randomly, and an agent
using an MDP formulation of the problem, which models
the stock price as a Markov chain. The MDP-based agent
uses Monte-Carlo tree search to select actions.

To compare the performance of the methods involved, we
compare the trajectories defining the account balance dur-
ing the simulations, as shown in Figure 9. For each method
it shows the balance of the bank account for either 1000
or 1600 days. For each company, the scenario-based agent
earns consistently more money in comparison to the other
methods and, as expected, the random agent performs
poorly. Based on our experiments we conclude that plan-
ning with scenarios has shown to perform well in this do-
main.



6 RELATED WORK

Ströhle et al. (2014) present a method to schedule tasks,
where the uncertainty is also represented by weighted sce-
narios. Their method solves the problem for each scenario
to reach consensus. A similarity with our work is that the
method can be used to balance demand and supply, but our
Scenario-POMDP formulation has been shown to outper-
form the consensus algorithm in case of high uncertainty.
An important difference between the work by Ströhle et al.
and this paper is that we define scheduling of tasks as a
planning problem.

The problem to assign weights to expert opinions regarding
the future is studied by Carvalho and Larson (2013). The
method proposed is similar to our work because the sim-
ilarity between opinions is measured by a distance func-
tion based on squared errors, which we also use to assign
weights to scenarios, and our scenarios can also be consid-
ered as opinions regarding uncertain future events. In our
work we always recompute weights associated with sce-
narios, whereas the work on opinion pools allows experts
to update weights when new opinions become available.

Optimization using scenarios has been studied in the con-
text of stochastic programming. Multi-stage stochastic pro-
gramming problems can be considered as a subclass of
Markov Decision Processes with a finite horizon (Defourny
et al., 2011), and in this formalism the uncertainty is also
represented by future scenarios, which is similar to our rep-
resentation of state scenarios.

Exploiting factored structures in the POMCP algorithm has
been studied by Amato and Oliehoek (2015). They propose
a variant of POMCP that does not assume a factored model,
but it uses factored value functions, which reduces the num-
ber of joint actions and joint histories in the multi-agent
setting. A similarity is that we use a factored representa-
tion in each node of the POMCP search tree, which we can
exploit to sample scenarios rather than states, but factored
value functions have not been considered in our work.

7 CONCLUSIONS

In this paper we proposed a scenario-based approach to pre-
dict external factors that are difficult to model using a com-
pact Markovian state. Scenarios represent sequences of
states, and we have shown how a scenario can be weighted
based on a sequence of states that occurred in the past, cor-
responding to the likelihood that a scenario perfectly pre-
dicts future states. In order to use the scenario represen-
tation in planning problems, we proposed a model called
Scenario-POMDP, which enables agents to reason about
future states during planning. To demonstrate the proposed
model, we formulated matching of demand with renew-
able supply in smart grids as a Scenario-POMDP, and we
have shown that our model can also be used to automati-

cally trade financial options. In both cases our Scenario-
POMDP model performs better than other methods for de-
cision making in these domains.

In future work we aim to study metrics for computing the
distance between scenarios in which states are not repre-
sented by a single numerical value. Another direction for
further research is defining a belief update for scenarios
based on Bayes’ rule, to replace the Monte-Carlo backups
in our planner. Moreover, in our current work we assume
that the domain-level state of the environment is observ-
able, but we also want to study planning with scenarios for
problems in which this part of the environment is partially
observable, which requires factored observations.
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