A Scenario State Representation for Scheduling
Deferrable Loads under Wind Uncertainty

Erwin Walraven
Delft University of Technology
Mekelweg 4, 2628 CD
Delft, The Netherlands
e.m.p.walraven@tudelft.nl

ABSTRACT

Integration of renewable energy in power systems is a poten-
tial source of uncertainty, because renewable generation is
variable and may depend on changing and highly uncertain
weather conditions. In this paper we present and evaluate a
new method to schedule power-demanding tasks with release
times and deadlines under uncertainty, in order to balance
demand and uncertain supply. The problem is considered
as a multiagent sequential decision making problem where
agents have to deal with uncertainty. Our main contribution
is a scenario state representation and an algorithm that com-
putes a belief over future scenarios, rather than states. The
algorithm is used to recompute the belief when new informa-
tion becomes available. Experiments show that our method
matches demand and uncertain supply to reduce grid power
consumption, and outperforms an existing online consensus
scheduling algorithm.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:

Scheduling; G.3 [Probability and Statistics|: Probabilis-

tic algorithms; 1.2.11 [Distributed Artificial Intelligence]:

Multiagent systems

General Terms

Algorithms, Performance

Keywords
Planning under Uncertainty, Scheduling, Smart Grids

1. INTRODUCTION

Handling uncertainty of renewable generation is an im-
portant challenge in the development of reliable smart grids.
There is a worldwide growth of distributed renewable energy
generation and governments want to accelerate this to ad-
dress problems related to, for example, climate change [8].
An example is power generated by wind turbines. Although
renewable wind energy is clean and cheap, it may be inter-
mittent and its availability is uncertain and difficult to pre-
dict. For instance, the prediction of short-term wind power
has a root mean square error of approximately 18 percent
with a prediction horizon of 24 hours [5], which shows that

Appears in: The 10th Annual Workshop on Multiagent Se-
quential Decision-Making Under Uncertainty (MSDM-2015),
held in conjunction with A AMA S, May 2015, Istanbul, Turkey.

Matthijs T. J. Spaan
Delft University of Technology
Mekelweg 4, 2628 CD
Delft, The Netherlands
m.t.j.spaan@tudelft.nl

decision making methods have to deal with uncertain infor-
mation regarding the short-term future.

Research has shown that the most severe problems occur
during peak-load hours if energy demand is high and wind
power generation is interrupted, because the system may
not have sufficient resources to compensate for the lack of
wind power [9]. Demand-side management is a potential so-
lution to deal with this problem, which intends to encourage
consumers to adapt their behavior in terms of demand, tim-
ing and flexibility, as an alternative to improving renewable
energy availability on the supply side [7]. To reduce peak
power consumption and to mitigate the effects of uncertain
renewable power supply, loads can be deferred in time, such
that they can be executed during off-peak hours. An exam-
ple of such a deferrable load is the charging process of an
electrical vehicle, which often does not have to be charged
immediately, as long as the available power in the battery is
sufficient to reach a destination.

In this paper we present a new algorithm to schedule de-
ferrable loads, which takes uncertain information regard-
ing renewable supply into account. Our algorithm sched-
ules deferrable loads with a release time, deadline and a
fixed demand profile, and assumes that there are two en-
ergy sources: conventional generation and uncertain renew-
able supply. The demand is assumed to be fixed and known,
i.e., there are no online arriving tasks. We formulate the
problem as a sequential decision making problem with mul-
tiple agents and we apply planning to make online schedul-
ing decisions. In particular, we formulate the problem as a
special case of a Partially Observable Markov Decision Pro-
cess (POMDP) [6, 17]. We model each deferrable load as
an agent, which occurs naturally in practice if, for example,
multiple electrical vehicles have to coordinate their energy
consumption. Our algorithm belongs to a more general class
of task scheduling algorithms, and therefore we use the terms
load and task interchangeably.

A key idea in our work is that we do not only keep track
of the current availability of renewable energy at an arbi-
trary timestep t. Instead, we compute a probability distri-
bution over the entire set of scenarios, given the renewable
supply observed until timestep ¢. In planning terminology,
rather than maintaining a belief over states, we compute a
belief over scenarios. We illustrate this with an example,
also shown in Figure 1. The available renewable energy at
time t (i.e., the state) is approximately the same for each
scenario, but the trajectories until time ¢ are different. If
the available supply is very low until time ¢ (i.e., the bottom
trajectory is observed), then it is most likely that the sce-

Supply

Figure 1: Scenarios and long-term correlations.

nario labeled * predicts the future and supply is expected to
increase after time t. If we only look at the supply at time ¢,
which is identical for each scenario, we would not be able to
derive this prediction because the renewable supply is not a
Markovian signal, and is not easily modeled as such. This
minimalistic example illustrates that scenarios account for
long-term correlations in available supply.

Our main contributions can be summarized as follows.
We consider an online task scheduling problem to balance
demand and uncertain supply. For this problem we provide a
planning formulation involving scenarios defining renewable
supply, as illustrated above. In experiments we show that
our method outperforms an existing online task scheduling
algorithm in case of high supply uncertainty. As a concrete
example of uncertain renewable energy, we include data from
a real wind farm in our evaluation.

First we provide some background regarding planning un-
der uncertainty in Section 2. Then we define an online task
scheduling problem in Section 3, and we discuss two recently
proposed algorithms for this problem. In Section 4 we show
how the problem can be defined as multiagent decision mak-
ing problem using the POMDP framework. Section 5 de-
scribes our experiments, in which we compare our algorithm
with existing methods. In the remaining parts of the paper
we discuss related work and we summarize our conclusions.

2. PLANNING UNDER UNCERTAINTY

In this section we provide background information about
planning under uncertainty and sequential decision making.
Planning under uncertainty involves agents that interact
with their environment by executing actions, and observing
effects caused by these actions. This is a challenging prob-
lem if agents are uncertain about the outcome of their action
execution, and if they cannot fully observe the environment
they are acting in. The Partially Observable Markov Deci-
sion Process (POMDP) formalism provides a framework to
plan in such uncertain environments [6, 17]. In a POMDP,
it is assumed that the environment is in a state s € S. After
executing an action a € A in state s, the state of the environ-
ment transitions to another state s’ € S according to proba-
bility distribution P(s’|s,a) and a reward R(s,a) is received
from the environment. A state transition from s to s’ is
only conditionally dependent on state s and action a, which
is called the Markov property. In contrast to MDPs with
full observability [13], the agent does not directly perceive
the state of the environment in a POMDP. It receives an
observation o € O that can be used to reason about the un-
derlying MDP state of the environment, using a probability
distribution P(o|a, s’). Since states are not directly observ-
able in a POMDP, agents maintain a belief state, denoted b,
which represents a probability distribution over states. The

resulting belief state b), after executing action a and observ-
ing o in belief state b can be determined using Bayes’ rule.
To act in a partially observable environment, agents use a
policy m(b), which maps belief states to actions. A pol-
icy m(b) is characterized by a value function V™ (b) defining
the expected discounted reward collected by the agent when
executing policy 7 from belief state b. Computing exact
solutions to POMDPs is known to be intractable [11], but
many approximate methods exist (see, e.g., [12, 18]). In this
paper we use POMCP [16], an online Monte-Carlo planning
algorithm that is capable of dealing with a large number of
states. We use POMCP because it does not need explicit
transition and observation probability distributions. It only
requires a black-box simulator of the POMDP during plan-
ning. Another reason for using POMCP is that it can be
used to sample scenarios, rather than sampling states from
a belief state.

3. TASK SCHEDULING

Before presenting our planning algorithm to schedule tasks,
we introduce the model of the task scheduling problem under
consideration in this section. Several algorithms have been
proposed to solve this task scheduling problem. Therefore,
we also discuss an offline scheduling algorithm using a sim-
ple greedy heuristic, and an online consensus algorithm. The
overview serves as an introduction to existing work, and we
use the algorithms in our experiments to compare the per-
formance of our new algorithm with existing methods.

3.1 Task Scheduling Model

In this section we formally define the online task schedul-
ing problem, and we introduce the notion of scenarios that
we exploit in our solution.

We consider a set of n power-demanding tasks, denoted
by J = {j1,...,Jn}, where each task j; is parameterized by
a duration [;, release time r;, deadline d; and power de-
mand p;. Hence, we define each task j; as a tuple j; =
(li,ri,di,ps). A task is not allowed to start before its re-
lease time and must be finished by the deadline. The power
demand p; of task j; represents the demand per timestep,
which means that the total power consumption of task j;
equals [; - p;. Tasks cannot be preempted during execution
once a task has been started. We assume a finite time hori-
zon T, defining the discrete timesteps 1,2,...,7.

There are two energy sources available: renewable en-
ergy derived from wind and conventional generation from
the electricity grid. The availability of conventional gener-
ation is infinite and there is a cost function c(u) defining
the cost of consuming w units from the grid. We assume
that renewable energy per timestep is finite, has zero cost
and cannot be stored to be used in subsequent timesteps.
The amount of renewable energy available is represented by
a scenario x = (z1,2,...,2zr) defining the the number of
units available at each timestep.

A schedule S = (hi,...,hn) defines, for each task j; a
starting time h; satisfying the following conditions:

hi >r; hi +1; —1<d; (i:l,...,n).
The first condition states that task j; cannot start before its
release time 7;, and the second condition defines that task j;
cannot run after the deadline d;. The total demand w(S,t)

input : tasks J and scenario x
output: schedule S

sort tasks in J by decreasing length

S + empty schedule

fort=1,...,7 do

‘ ut¢ < units available at time ¢ in scenario x

end

foreach j; € J do
h; < minimum cost starting time of j; given w
deduct renewable units consumed by j; from u

end

© W0 N0 A WN

=
[=]

Algorithm 1: Offline greedy.

of a schedule S = (h1, ..., hy) at time ¢ is defined as follows:

w(57 t) = ZIS(Z7t) - Diy
i=1

where I5(i,t) is an indicator function that equals 1 if task j;
runs at time ¢ in schedule S, and equals 0 otherwise. The
number of required grid units Us . corresponding to sched-
ule S and fixed scenario x = (z1,%2,...,2T) can be com-
puted as shown below:

T
Uss = Z max (w(S,t) — z¢, 0).

t=1

The cost ¢(Us,;) is used as an objective function to be
minimized, in order to match demand and the supply de-
fined by the scenario. If the scenario is known prior to the
first timestep, then an optimal solution can be computed
using mixed-integer programming. However, in this paper
we consider the case in which the scenario is revealed on-
line, reflecting the uncertainty in renewable energy. This
means that x; becomes available and known to our algo-
rithm at time ¢, and scheduling decisions have to be made
online without certain information regarding the future. The
partial scenario (x1, x2, ..., x:) revealed until time ¢ is called
a realization, denoted g1, = (q1,G2, .-, Gt)-

3.2 Offline Greedy Scheduling

A greedy algorithm to schedule the tasks in the case with-
out uncertainty is shown in Algorithm 1. Initially the tasks
are sorted by decreasing length, and then it greedily assigns
starting times to tasks by computing the starting time that
leads to minimum cost, given the starting times of the pre-
viously scheduled tasks and the remaining renewable energy
units. The renewable energy units in the data structure w
are used to keep track of the renewable supply available af-
ter scheduling a task. The intuition behind starting with the
longest task is that it has the highest demand, and it would
be more difficult to find a low-cost starting time if several
smaller tasks have been scheduled already.

Algorithm 1 assumes that no tasks have been started al-
ready, and computes a starting time for each task in J. If
a partial schedule exists and some tasks in J already have
a starting time assigned, then the same algorithm can be
used for the remaining tasks. However, it has to account for
the renewable energy units consumed by the scheduled tasks
before assigning starting times to the remaining tasks.

3.3 Online Consensus Scheduling

Strohle et al. [19] present a multi-machine consensus algo-
rithm to schedule multiple tasks under wind uncertainty in
case of uncertain supply and demand. The problem we study
is similar, without demand uncertainty. Since our problem is
a special case of the problem they consider, we can directly
apply their consensus algorithm to schedule tasks with fixed
demand. In the remainder of this paper consensus refers to
the m-consensus algorithm from [19], which we briefly de-
scribe below. The notation has been adapted in order to be
consistent with the problem we defined in Section 3.1.

Consensus operates on a set of scenarios, denoted X, con-
taining several possible scenarios defining the renewable sup-
ply at each timestep. Note that these scenarios are not
necessarily the same as the scenario that is used for online
scheduling. The algorithm starts with an empty realiza-
tion go = (), since no prior information is known. Subse-
quently, it incrementally builds the realization defining the
renewable supply known until the current timestep.

At any timestep ¢, Algorithm 2 is called with schedule S as
input, containing the starting times of tasks that have been
started already, and the scenario set X and realization g .
In the definition of the algorithm, OFFLINEGREEDY rep-
resents a call to Algorithm 1, where the greedy algorithm
takes partial schedule S into account when scheduling the
remaining tasks. The function £(z|q) represents the like-
lihood that x predicts future renewable energy given the
realization until the current timestep ¢. In our experimen-
tal setup we discuss how such a likelihood can be computed.
The symbol L denotes the decision to schedule no additional
task. The consensus algorithm solves an offline scheduling
problem for each scenario in X, and weights its decisions
with the likelihood of the scenario. Based on the decisions,
it selects one additional task to be started at time ¢, and the
procedure repeats until no more tasks are started.

4. TASK SCHEDULING AS PLANNING

Given the uncertainty that is present when matching de-
mand to uncertain supply, it is natural to consider this prob-
lem as a sequential decision making problem under uncer-
tainty involving multiple cooperative agents. Coordination
among agents is required to ensure that tasks do not start
all at the same time when renewable energy suddenly be-
comes available. In this section we formulate the online task
scheduling problem as a special case of a Partially Observ-
able Markov Decision Process (POMDP), which allows us
to apply online planning algorithms to make decisions un-
der uncertainty. We argue how the online task scheduling
problem can be formulated as a POMDP, and eventually we
introduce a new online task scheduling algorithm for this
problem based on POMCP, which is an online algorithm for
solving POMDPs.

4.1 Inferring Beliefs over Scenarios

In this section we discuss beliefs over scenarios, and how
we can infer the belief from observed renewable supply. In
contrast to a standard state representation for renewable
supply, a scenario accounts for long-term correlations and
relates renewable supply observed in the past to renewable
supply in the future. As we discussed before, the available
renewable energy at time t in scenario x = (z1,z2,...,27)
is defined by variable z;, which becomes known at time ¢.
Therefore, it is a natural assumption to let the set of POMDP

input : partial schedule S, set of tasks J, realization ¢,
scenario set X and current timestep t
output: set of tasks J; starting at time ¢

1 Jt = @
2 do
3 fi<=0 (i=1,...,n)
4 fJ_ ~—0
5 foreach z € X do
6 Sz + OFFLINEGREEDY(J, z, S)
7 p < set of tasks starting at time ¢ in S,
8 if J; = p then
9 | i fi+L(xlg)
10 else
11 foreach j; € J — J; do
12 if j; starts at time t in p then
13 | fi = fi+ L(xlq)
14 end
15 end
16 end
17 k < argmax;cqy . oy Ji
18 if j1. > fr then
19 ‘ R
20 else
21 it Jk
22 Jy +— J; U {]k}
23 add task jr to S with starting time ¢
24 end
25 end
26 while j* #1;

Algorithm 2: Consensus.

observations correspond to the set of values these variables
can take, such that x; is observed at time ¢ with probabil-
ity 1 if x is the scenario. However, if we would apply a belief
state update based on Bayes’ rule, this would lead to prob-
lems if the realization g1, does not correspond to the first ¢
units of at least one scenario in X. In the remainder of this
section we discuss an alternative method to compute a sce-
nario belief, which infers the belief from the partial scenario
observed so far.

Algorithm 3 computes a belief b over scenarios, given the
realization until time ¢, scenario set X and a threshold p.
The main idea behind the algorithm is that the future can be
predicted by looking at scenarios similar to the realization.
The similarity between a scenario x and the realization until
time ¢ can be measured by computing the sum of squared
errors. Therefore, the algorithm constructs a set X’ con-
taining at least p scenarios similar to realization g1, based
on the sum of squared errors. Then it defines a probabil-
ity distribution over the scenarios in the set X', where the
probabilities are inversely proportional to the computed er-
rors. The probability 0 is assigned to scenarios that are not
in the set X’. A normalization step is performed on line 14
to ensure that the probabilities sum to 1. The symbol ¢
represents a very small non-zero constant to avoid division
by zero.

Selecting scenarios based on an error metric ensures that
probabilities are assigned to scenarios similar to the realiza-
tion. An informal visual representation of this approach is
shown in Figure 2, which contains four scenarios defining
renewable supply. Timestep ¢ is represented by the vertical

input : realization ¢, scenario set X, threshold p
output: belief b
X'+ 0
d+0
while | X’| < p do
X« {zeX:>_(¢i—)* <d}
d+—d+1
end
foreach z € X do
if 2 € X’ then
| be 1/ (e4+ X0 (g —20)?)
else
| bs <0
end

© 0N kW N

=R e
N = O

end
normalize b

e
NN

Algorithm 3: Inferring a scenario belief.

Supply

Figure 2: Scenarios and realization until time ¢.

dashed line, and the bold line labeled g represents the re-
alization ¢ ; until this timestep. The supply and timesteps
are depicted as being continuous, but it is also possible to
apply the same techniques for discrete supply and discrete
timesteps. As can be seen in the figure, the realization does
not match any scenario until time ¢, but is very similar to
scenario 3. The algorithm will assign a high probability to
this scenario, because it has a small error. The remaining
scenarios will get a lower probability, and the threshold p
can be used to filter out scenarios for which the error is too
high. If the set X contains scenarios that are sufficiently
representative, then the procedure computes a probability
distribution over scenarios defining future renewable energy
availability starting from timestep t+1, given the realization
until time ¢.

4.2 POMDP Task Scheduling Model

In this section we discuss an online task scheduling method
based on POMDPs, in which each task is represented by
an agent deciding whether it should start at the current
timestep or not, given the decisions made by other agents
and a belief regarding the scenario defining available renew-
able energy. We define n agents, where each agent corre-
sponds to a task. Agents are able to start a task if they own
a token, which is initially owned by agent 1. Once agent i has
made a decision, it gives the token to agent i+1 (1 <14 < n),
and the token returns to agent 1 once agent n has made a
decision. In this approach, n actions are executed within one
real-world timestep, before proceeding to the next timestep.

The rotating token allows us to reduce the size of the ac-
tion space from exponential to constant. When consider-
ing all combinations of actions, however, the joint action
space remains exponential in the number of agents. The
same approach to reduce the size of the action space is used
n [15]. The token approach requires that we store the deci-
sions made by agents in a separate state variable, which will
become clear in the remainder of this section. We model the
multiagent problem as a POMDP, where agents are coopera-
tive and we assume the problem to be centralized. We define
a factored state space using the following state variables:

scenario
current timestep
agent owning the token

S € X
StG{l,...,T}
se €{1,...,n}

sri € {1,...,T} release time of task ¢ (i = 1,...,n)
sa; €40,...,T} delay steps of task i (i =1,...,n)

Ssi €40,...,T} remaining steps of task ¢ (i =1,...,n)
sei € {R, I} decision of agent i (i =1,...,n)

Now we explain the definition of some of the state vari-
ables, and how they relate to the task scheduling problem
from Section 3.1. The variable s, denotes the scenario that
describes the amount of renewable energy from time 1 to 7.
This state variable cannot be observed directly since it has
to be derived from observations regarding, for instance, wind
speed. For each agent ¢ there is a variable s, ; to encode the
release time r; of the task. The variable sq; represents the
maximum number of timesteps that task 7 can be postponed,
which can be used to encode the deadline d;. To encode the
length I; of task ¢, the variable s, ; represents the number of
timeslots task ¢ still has to be running. The state also con-
tains information regarding the last decision made by agent ¢
for task i, represented by s.;, which can be either running
(R) or idle (I). In total this state representation comprises
4n + 3 state variables.

The action space represents the actions individual agents
can take to start or postpone a task at a given timestep.
Since we are dealing with multiple agents, a joint action
space representation would scale exponentially in the num-
ber of agents. Our rotating token concept allows for a con-
stant size action space. We define two actions RUN and
IDLE, which correspond to the decisions for the agent own-
ing the token. The factored state variables can be used to
determine which actions are feasible to execute given the
current state. If sq equals j (i.e., agent j owns the token),
then action RUN is feasible if s5,; > 0 and s; > s,;. Thus,
action RUN can be executed if task j has been released and
has not been completed yet. For agent j, action RUN decre-
ments ss,; by one, sets sq,; to 0 and sets sc,; to R. This
ensures that task j can never be postponed in the remain-
ing timesteps. Similarly, if s, equals j, then action IDLE is
feasible if sq4,; > 0. It decrements sq4,; by one if sq,; > 0 and
sets sc; to I. IDLE is also executed if the task has been
completed (i.e., ss,; equals 0). After each action execution,
the token variable s, is updated such that the next agent
receives the token. If s, equals n, then s; is also incremented
by one to proceed to the next timestep.

The rewards are negative, representing the cost of schedul-
ing tasks, and depend on the decisions made by the agents
and the available renewable supply defined by the scenario.
For example, if two agents decide to run at time k and they
both require 5 units, then the reward is determined by the

()
(oo
DEND
g2

Figure 3: DBN defining the dependencies between
state variables and rewards for 2 agents.

available renewable energy at time k in scenario s;. If there
are 8 units renewable energy are available, this results in
reward —c(2), since two units have to be consumed from the
grid. The dependencies between the relevant factored state
variables and the reward are shown in Figure 3, for a task
scheduling problem with two agents. Recall that within one
real-world timestep, n actions are executed before the state
variable s; is incremented. When the second agent decides
to run a task, it sets its decision in the corresponding state
variable, indicated by the square labeled 2 and the arrow
to .. The reward is determined by the scenario, the cur-
rent timestep, and decisions made by other agents within
the current timesteps. In the example in Figure 3, the deci-
sion of agent 1 is represented by s, 1, and this information is
required to compute the remaining renewable supply to de-
termine the reward of agent 2. With a joint action space we
would not need to have separate state variables to keep track
of decisions made by agents, but with our fixed-size action
space it is required because rewards depend on previously
executed actions.

Our state space has some special characteristics that we
can exploit to plan more efficiently. All state variables, ex-
cept scenario variable s, are fully observable and behave as
a deterministic state machine where any transition probabil-
ity is either 0 or 1. These fully observable variables represent
the states of the tasks. The variable s, represents the sce-
nario and cannot be fully observed, but this state variable
does never change and therefore its transitions are not de-
pendent on other state variables. Instead of maintaining a
belief over the entire state space, we infer a belief over state
variable s;, and together with the known state of the sched-
uler (i.e., the remaining state variables) it defines a belief
state.

Our POMDP state representation can also easily be con-
verted to a regular MDP, by discarding the scenario vari-
able s, and introducing an additional factored state variable
that represents the available renewable energy at time s;.
In contrast to a scenario, this state variable represents the
available units at an individual timestep, and its transitions
can be defined by a Markov chain. In our experiments we
compare both formulations of the problem.

4.3 Task Scheduling using POMCP

To create an online task scheduling algorithm, we use an
adapted version of POMCP [16], which is an online planning
algorithm that relies on Monte-Carlo tree search to decide
which action to execute. POMCP has shown to be able to
deal with POMDPs having a large state space, and does
not require full enumeration of the state space. This is rele-
vant because our POMDP formulation may grow very large

input : set of tasks J, scenario set X, threshold p

q1,0 < 0
s < initial scheduler state
D+
fort=1,...,7 do
0 + renewable units observed at time ¢
q1,¢ < q1,e—1 U {o}
b <+ BELIEF(q1 .+, X, p)
fori=1,...,ndo
a <+ POMCP(s,b, X)
if a = RUN and j; ¢ D then
start agent ¢ at time ¢
D+ DU{j:}
end
s < state obtained after executing a in state s
end
16 end

© 0N O A W N

I~ S SO
B W N = O

o
(<]

Algorithm 4: Online Scenario POMCP.

depending on the time horizon and the number of agents.
Additionally, it does not perform a standard belief state up-
date using Bayes’ rule.

The high-level description of our algorithm is shown in
Algorithm 4. The algorithm starts with defining an ini-
tial empty realization, representing that no prior knowledge
regarding renewable energy is available. On line 2 the ini-
tial state of the scheduler is defined, which consists of all
POMDP state variables, except scenario variable s,. At
each timestep, the algorithm observes the number of re-
newable energy units available and updates the realization
(line 5 and 6). Then a belief over scenarios is computed using
Algorithm 3. For each agent, the algorithm performs a new
POMCP search starting from the current scheduler state s
and scenario belief b to decide whether tasks corresponding
to the agents should start or not. After choosing an action,
the new scheduler state is computed on line 14, which is pos-
sible because these state variables are fully observable and
their transitions are deterministic (see Section 4.2). No-
tice that we do not have to implement the rotating token
explicitly, because the state transitions ensure that the cor-
responding state variable is updated correctly.

We use the POMCP algorithm [16] with three modifica-
tions. In the simulate procedure we use an e-greedy ac-
tion selection heuristic, where the probability to select ran-
domly decreases over time. The reason is that an e-greedy
action selection heuristic gives more stable performance in
this domain in comparison to UCB [2]. Instead of perform-
ing a random rollout when the search leaves the existing
tree, we compute an offline greedy schedule for the remain-
ing timesteps using Algorithm 1, consistent with decisions
made previously, and we compute its cost. For each agent a
new POMCP search tree is created, instead of pruning the
search tree after executing an action and making an obser-
vation.

S. EXPERIMENTS

We conducted several experiments to evaluate our algo-
rithm and to compare its performance with the algorithms
from Section 3. We also compare the performance with an
offline optimal algorithm which assumes that there is no un-
certainty and future available renewable power is known. As

a concrete example of renewable energy integration with un-
certainty, we have chosen wind power and we use data from
a real wind farm. First we introduce the setup of our ex-
periments and the configuration of the algorithms involved,
which also shows how a scenario set can be built in a more
realistic setting.

5.1 Wind Scenarios from Real Data

As mentioned before, in our experiments we demonstrate
our scenario-based task scheduling algorithm using scenarios
derived from a real wind farm. We obtained historical hourly
wind data from the Sotavento wind farm located in Galicia,
Spain for 1708 consecutive days." For each sequence of 24
hours, we define a scenario = (z1,...,z24), where each z;
corresponds to the wind speed measured during hour 7 in me-
ters per second. This yields 40969 scenarios in total, where
each scenario consists of 24 hours. We round the wind speed
values to the nearest integer, to discretize the observations.
The generated power Z(x,t) at time ¢ in scenario x can be
derived using a sigmoid power curve:

Z(w,t) = C- (145 3o0)7L,

where C' is a variable to define the capacity of the gener-
ator [14]. For each task scheduling instance, we choose a
scalar C' such that Z(z,t) = >, li - pi, which ensures that
the total demand equals the available renewable supply dur-
ing the day. The same approach to model uncertain supply
is used by Strohle et al. [19].

5.2 Task Scheduling Instances

In each experiment we evaluate task scheduling algorithms
on 200 instances. Each instance consists of a set containing 6
tasks, J = {j1,Jj2,..., 76}, which implies that the tasks that
have to be scheduled by 6 agents. We assign a duration [;
between 3 and 7 to each task j;, and a release time r; be-
tween 8 and 12, both sampled uniformly at random. The
release times represent that tasks are released between 8AM
and noon during the day. The deadline d; is set in such a
way that tasks have finished by the end of the day. The
power demand p; equals 10 for each task, so a task requires
10 units at each timestep that the task is running. The cost
of consuming one unit from the grid is assumed to be 1 (i.e.,
c¢(u) = 1 VYu € N). To define the renewable supply that is
available during the day in each experiment, we sample a
realization gi,24 from the scenario set. When evaluating of-
fline algorithms, there is no uncertainty and the realization
is assumed to be known throughout the day. In our online
algorithms, however, the realization is revealed online during
the day. Days in which the realization is relatively flat con-
tain limited uncertainty, so we selected realizations where
the renewable supply from time 1 to 6 and from time 13
to 18 is higher than the supply during the remaining hours.
This guarantees that in any instance, the renewable supply
is unstable and varies during the day.

5.3 Algorithm Configurations

Several algorithms are involved in our evaluation for com-
parison. We use mixed-integer programming to compute
offline schedules, and we run an MDP planner, our scenario-
based POMCP algorithm and consensus. In this section we
briefly describe their setup and parameters.

! Consult www.sotaventogalicia.com for more information.

[
= N D O

S5 L L

Consensus MDP planner POMCP 1 POMCP 2

Cost increase

Figure 4: Cost increase for each algorithm, without
outliers.

Consensus MDP POMCP 1 POMCP 2
Mean 1.33 1.15 1.05 1.23
Std 0.44 0.21 0.12 0.25
Max 4.22 2.55 2.07 2.84

Table 1: Experiment statistics.

To compute offline schedules, where supply is known and
certain, we use Gurobi’? with a 1 percent MIP gap. The
resulting schedules are useful to compare the performance of
online algorithms with offline schedules without uncertainty,
because the cost of an offline schedule is a lower bound on
the cost of any online schedule for the same task scheduling
instance.

Unless stated otherwise, the scenario-based POMCP al-
gorithm runs 200 iterations, and follows an e-greedy explo-
ration strategy. In the first 100 iterations, the probability to
select random actions decreases linearly from 1 to 0, and the
last 100 iterations are fully greedy. To infer the scenario be-
lief, we use Algorithm 3 with a threshold parameter p equal
to 10.

We also implemented an MDP planner with the same state
representation, but instead of having scenarios, we use a
Markov chain to model the renewable supply (see Section 4.2
for details). To find actions with our MDP model, we apply
5000 search iterations of POMCP.

The consensus algorithm [19] has been implemented as
shown in Algorithm 2, and we use a Hidden Markov Model
to compute the likelihood of scenarios. We use the Baum-
Welch algorithm [3] to learn a Hidden Markov Model with 10
hidden states from the Sotavento wind data, and we run the
forward-backward algorithm to calculate observation proba-
bilities.® For more details about Hidden Markov Models to
determine the likelihood of scenarios, we refer to the paper
by Stroéhle et al. [19].

5.4 Scheduling Known Realizations

We ran the algorithms on 200 task scheduling instances
and Figure 4 shows their performance in comparison to of-
fline schedules. For each instance, we computed an offline
schedule and we computed the cost increase of the resulting
online schedules relative to the cost of the offline schedule. In
the figure, the offline cost is represented by 1, and the box-
plots show the distributions of the increased cost for each
algorithm, relative to offline. For example, a cost increase
of 1.2 represents that the cost of an online schedule is 20 per-
cent higher than the cost of the offline schedule for the same

2Further information about Gurobi Optimizer is available
on www.gurobi.com.

3For the HMM implementations we use the Jahmm library,
which can be found here: code.google.com/p/jahmm.

instance. For readability reasons we removed the outliers
from the figure, and we included additional statistics in Ta-
ble 1. The statistics for the scenario POMCP algorithm are
shown in the columns labeled POMCP 1. We can conclude
that both MDP planning and the scenario-based POMCP
planner outperform consensus on this set of instances with
high supply uncertainty.

In this experiment, the realization ¢, is also one of the
40969 scenarios in the set X, so after having received several
observations, Algorithm 3 automatically identifies the right
scenario in X. This shows that if the algorithm encounters
a known realization (i.e., ¢g1,r € X), it performs better than
both consensus and a standard MDP planner.

5.5 Scheduling Unseen Realizations

In our first experiment we concluded that the scenario-
based planner performs well for realizations that already ex-
ist in the scenario set. If the scenario set is accurate and
representative, it will rarely happen that new realizations
are encountered. However, it is also interesting to study the
performance on unseen realizations, that have not been en-
countered before. We repeated the experiment above, except
that we excluded the realization from the scenario set X for
each run of the algorithm. This situation represents that
a new realization is encountered that does not exist in X.
We also increased the number of POMCP search iterations
to 500. The results are shown in Figure 4 and Table 1, in the
columns labeled POMCP 2. We conclude that our scenario-
based POMCP planner still performs well if it encounters
new realizations. The algorithm still performs better than
consensus, and performs slightly worse than the MDP plan-
ner. In this experiment the belief over scenarios may not
always be an accurate representation of future supply, which
explains that a naive MDP formulation may perform better
on some task scheduling instances. However, in practice it
is unlikely that realizations are always new, and it can be
expected that the performance of the POMCP planner im-
proves if it encounters known scenarios more often, which
we study in the next section.

5.6 Known and Unseen Realizations

As explained above, in practice it is unlikely that a realiza-
tion is always new. Therefore, we ran the scenario POMCP
planner on the same set of instances, but we excluded the
realization from the scenario set with a certain probabil-
ity. This represents a situation in which a realization is
sometimes known (i.e., g1, € X), and in other cases a new
realization is encountered (q1,7 ¢ X). The results of the ex-
periment are shown in Figure 5 and Table 2, where the prob-
ability corresponds to the probability to exclude the actual
realization from the set X, and the distributions represent
the cost increase relative to offline scheduling without uncer-
tainty. From the results in Table 1 and Table 2 we conclude
that the scenario POMCP planner always performs better
than consensus, and if it becomes more likely to encounter
known realizations, then performance increases.

5.7 Discussion

To summarize, we briefly reformulate the important out-
comes and conclusions from our experiments. Our main
findings can be described as follows. If a known scenario is
encountered (i.e., g1,7 € X), then our scenario-based algo-
rithm recognizes this existing scenario and performs better

0.8 1.0

I
r N M O @

Cost increase

"Probability

Figure 5: Cost increase for increasing probability to
exclude the realization from X, without outliers.

Probability 0.0 02 04 06 08 1.0

Mean 1.05 1.10 1.17 1.20 1.27 1.23
Std 0.12 0.21 035 0.37 0.38 0.25
Max 2.07 277 419 419 419 284

Table 2: Experiment statistics for increasing proba-
bility to exclude the realization from X.

than the standard MDP planner and consensus. If the real-
ization has never been encountered before (i.e., g1,7 ¢ X),
then our scenario-based algorithm still performs better than
consensus, but performs slightly worse than the MDP plan-
ner. If the probability to encounter known realizations in-
creases, the performance of the scenario-based algorithm,
in terms of grid power cost, becomes better. Our experi-
ments show that the scenario representation is a valuable
state representation, which turns out to be useful if an ac-
curate scenario set exists. As explained in the setup of the
experiments, it is expected that an accurate scenario set X
can be built using historical data (e.g., wind data). If a
large and accurate scenario set exists, then it pays off to use
beliefs over long-term scenarios.

6. RELATED WORK

Most notably, our work relates to the results from Stréhle
et al. [19]. The authors present a consensus algorithm to
match uncertain demand to uncertain supply in an online
setting with multiple agents. The consensus algorithm can
directly be applied to our problem, and our algorithm has
shown to outperform consensus in case of high supply uncer-
tainty. The role of consensus in online stochastic scheduling
in general is discussed in work by Bent and Hentenryck [4].
Similar to our work, there is a notion of scenarios, but we im-
plemented such scenarios in POMDP-based decision making
which, to the best of our knowledge, has not been addressed
in existing work. The authors identify the need to general-
ize consensus to multiple machines, which is addressed by
Strohle et al. [19].

Subramanian et al. [20] discuss online scheduling of de-
ferrable loads with supply uncertainty, and the authors pro-
pose a method for predictive control of tasks. In contrast to
our work, the predictions are a single valued prediction of
the total future renewable energy availability, whereas our
method and Strohle et al. [19] use multi-valued predictions
(i.e., scenarios) corresponding to multiple timesteps. Neely
et al. [10] describe a method for scheduling flexible deferrable
loads, which also tries to minimize the cost of consuming grid
power. In addition to minimizing grid power consumption,
the paper also presents an optimization problem where re-

newable sources dynamically set a price level of their service,
which we did not study in our work.

Exploiting factored structures in the POMCP algorithm
has been studied by Amato and Oliehoek [1]. They pro-
pose a variant of POMCP that does not assume a factored
model, but it uses factored value functions, which reduces
the number of joint actions and joint histories in the mul-
tiagent setting. Value functions are factored based on local
effects of actions, which is a technique that can also be com-
bined with our multiagent model to schedule tasks.

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new online task scheduling
algorithm to match demand to uncertain supply. This is
especially relevant in the context of power systems, where
renewable energy has to be integrated in the future smart
grid. We consider deferrable loads as tasks, and assume
that there are two energy sources: conventional generation
and uncertain renewable energy. Tasks should be scheduled
in such a way that renewable energy is used as much as
possible. We defined the problem as a multiagent sequen-
tial decision making problem under uncertainty, and we use
planning to make scheduling decisions. Our algorithm re-
lates closely to the Partially Observable Markov Decision
Process formalism. Rather than maintaining a belief over
states, we infer a belief over scenarios defining the supply,
and the belief is recomputed when new information becomes
available. We conducted an evaluation study with uncertain
renewable wind power, using data from a real wind farm. In
the experiments we found that our algorithm outperforms
an existing consensus algorithm in case of high supply un-
certainty.

In future work we aim to study how a scenario belief rep-
resentation can be implemented in a rolling horizon fashion,
where a scenario predicts k future timesteps and a belief is
constructed based on the last k observations. In our current
work we use a centralized approach, but we also want to cre-
ate a cooperative decentralized approach that corresponds to
tightly connected network structures of the electricity grid.
Another interesting direction for future research is general-
izing scenarios. A scenario representation relates previous
state observations to future state observations and we will
study whether this can be exploited in other planning do-
mains.

Acknowledgements

The work presented in this paper is funded by the Nether-
lands Organisation for Scientific Research (NWO), as part
of the Uncertainty Reduction in Smart Energy Systems pro-
gram. We would like to thank Mathijs de Weerdt for sharing
the Sotavento wind farm dataset.

REFERENCES

[1] C. Amato and F. A. Oliehoek. Scalable Planning and
Learning for Multiagent POMDPs. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2015.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
Analysis of the Multiarmed Bandit Problem. Machine
Learning, 47(2-3):235-256, 2002.

[3] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A
Maximization Technique Occurring in the Statistical

[10]

[11]

[12]

[16]

[17]

Analysis of Probabilistic Functions of Markov Chains.
Annals of Mathematical Statistics, 41:164-171, 1970.
R. Bent and P. V. Hentenryck. The Value of
Consensus in Online Stochastic Scheduling. In
Proceedings of the International Conference on
Automated Planning and Scheduling, pages 219-226,
2004.

G. Giebel, R. Brownsword, G. Kariniotakis,

M. Denhard, and C. Draxl. The State-Of-The-Art in
Short-Term Prediction of Wind Power. Technical
report, ANEMOS. plus, 2011.

L. Kaelbling, M. Littman, and A. Cassandra. Planning
and Acting in Partially Observable Stochastic
Domains. Artificial Intelligence, 101(1):99-134, 1998.
I. Koutsopoulos and L. Tassiulas. Challenges in
Demand Load Control for the Smart Grid. IEEE
Network, 25(5):16-21, 2011.

J. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and
N. Jenkins. Integrating distributed generation into
electric power systems: A review of drivers, challenges
and opportunities. Electric Power Systems Research,
77:1189-1203, 2007.

P. S. Moura and A. T. de Almeida. The role of
demand-side management in the grid integration of
wind power. Applied Energy, 87(8):2581-2588, 2010.
M. J. Neely, A. S. Tehrani, and A. G. Dimakis.
Efficient Algorithms for Renewable Energy Allocation
to Delay Tolerant Consumers. In Proceedings of the
IEEFE International Conference on Smart Grid
Communications, pages 549-554, 2010.

C. Papadimitriou and J. N. Tsitsiklis. The complexity
of markov decision processes. Mathematics of
Operations Research, 12(3):441-450, 1987.

J. Pineau, G. Gordon, and S. Thrun. Point-based
value iteration: An anytime algorithm for pomdps. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1025-1030, 2003.

M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1st edition, 1994.

V. Robu, R. Kota, G. Chalkiadakis, A. Rogers, and
N. Jennings. Cooperative Virtual Power Plant
Formation Using Scoring Rules. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages
370-376, 2012.

J. Scharpff, M. T. J. Spaan, L. Volker, and

M. de Weerdt. Planning under Uncertainty for
Coordinating Infrastructural Maintenance. In
Proceedings of the International Conference on
Automated Planning and Scheduling, pages 425-433,
2013.

D. Silver and J. Veness. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information
Processing Systems, pages 2164-2172, 2010.

M. T. J. Spaan. Partially Observable Markov Decision
Processes. In M. Wiering and M. van Otterlo, editors,
Reinforcement Learning: State-of-the-Art, pages
387-414. Springer Verlag, 2012.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized
Point-based Value Iteration for POMDPs. Journal of
Artificial Intelligence Research, 24:195-220, 2005.

(19]

20]

P. Strohle, E. Gerding, M. de Weerdt, S. Stein, and
V. Robu. Online Mechanism Design for Scheduling
Non-Preemptive Jobs under Uncertain Supply and
Demand. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent
Systems, pages 437-444, 2014.

A. Subramanian, M. Garcia, A. Dominguez-Garcia,
D. Callaway, K. Poolla, and P. Varaiya. Real-time
Scheduling of Deferrable Electric Loads. In
Proceedings of the American Control Conference,
pages 3643-3650, 2012.

