
Bootstrapping LPs in Value Iteration
for Multi-Objective and Partially Observable MDPs

Diederik M. Roijers
Vrije Universiteit Brussel &

Vrije Universiteit Amsterdam

Erwin Walraven
Delft University of Technology

Delft, The Netherlands

Matthijs T. J. Spaan
Delft University of Technology

Delft, The Netherlands

Abstract
Iteratively solving a set of linear programs (LPs) is a com-
mon strategy for solving various decision-making problems in
Artificial Intelligence, such as planning in multi-objective or
partially observable Markov Decision Processes (MDPs). A
prevalent feature is that the solutions to these LPs become in-
creasingly similar as the solving algorithm converges, because
the solution computed by the algorithm approaches the fixed
point of a Bellman backup operator. In this paper, we propose
to speed up the solving process of these LPs by bootstrap-
ping based on similar LPs solved previously. We use these
LPs to initialize a subset of relevant LP constraints, before
iteratively generating the remaining constraints. The result-
ing algorithm is the first to consider such information sharing
across iterations. We evaluate our approach on planning in
Multi-Objective MDPs (MOMDPs) and Partially Observable
MDPs (POMDPs), showing that it solves fewer LPs than the
state of the art, which leads to a significant speed-up. More-
over, for MOMDPs we show that our method scales better in
both the number of states and the number of objectives, which
is vital for multi-objective planning.

Introduction
Several exact algorithms for solving a variety of decision-
making problems in Artificial Intelligence, such as Multi-
Objective Markov Decision Processes (MOMDPs; Barrett
and Narayanan 2008), Partially Observable Markov De-
cision Processes (POMDPs; Kaelbling, Littman, and Cas-
sandra 1998) and zero-sum Markov games (Littman 1994;
2001) rely on solving sets of linear programs (LPs). For ex-
ample, the popular class of value iteration (VI) algorithms
for decision-theoretic planning applies the Bellman backup
operator until the fixed point is reached (Bellman 1957). If
value functions are represented by sets of vectors, then the
value iteration algorithm uses a pruning subroutine to remove
dominated vectors. The LPs solved in this pruning subroutine
become increasingly similar as the solution computed by the
value iteration algorithm converges towards the fixed point,
but so far this property has not been exploited and LPs are
solved from scratch in every iteration. There is a significant
amount of computation time to be saved here, because in
exact VI algorithms LP solving takes up a large proportion of
the total running time (Cassandra, Littman, and Zhang 1997).

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As a concrete example we consider the incremental prun-
ing algorithm for solving POMDPs. In the pruning subrou-
tine of this algorithm a collection of LPs is solved, in which
each constraint corresponds to a vector in the value function.
Rather than solving these LPs immediately based on all con-
straints, it has been shown that it is more efficient to construct
the LP incrementally by generating and adding constraints
one by one (Walraven and Spaan 2017). This technique adds
constraints that maximally reduce the LP’s objective value,
until an optimal LP solution is found. It first adds constraints
at the extrema of the belief simplex, before approaching the
belief point and constraints that constitute the optimal LP
solution. Typically, constraints added in early stages of the
algorithm turn out to be superfluous in hindsight.

Generating LP constraints incrementally has shown to be a
powerful method to accelerate the vector pruning subroutine
in incremental pruning for POMDPs (Walraven and Spaan
2017). In this paper we show that the iterative LP solution
method for vector pruning can also be applied in the context
of MOMDPs, rather than just POMDPs. However, in contrary
to POMDPs, the superfluous constraints added by this method
can lead to a significant number of iterations that can nullify
the benefits of building up the LPs incrementally.

Our main contribution is the Bootstrap LP algorithm
(BLP), which circumvents adding constraints that later turn
out to be irrelevant. BLP bootstraps using similar LPs from
the previous iteration of VI, as a heuristic to initialize LP con-
straints in a new iteration of VI. In particular, it takes a new
LP in the current iteration of VI, identifies the most similar
LP from the previous iteration and extracts the relevant con-
straints that defined the solution of this LP. Then, for every
such constraint it identifies the most similar constraint in the
current new LP. The BLP algorithm then starts to build the
new LP by first adding all those constraints, before iteratively
generating the remaining constraints. If the LP from the previ-
ous iteration is sufficiently identical, this leads to a reduction
in the number of constraints added. To our knowledge BLP is
the first algorithm that considers information sharing between
LPs across different iterations in VI algorithms.

In our evaluation we show that incremental generation and
bootstrapping of constraints leads to significant performance
improvements in two state-of-the-art exact value iteration
algorithms: CHVI for MOMDPs (Barrett and Narayanan
2008) and incremental pruning for POMDPs (Cassandra,

Littman, and Zhang 1997). We show that BLP needs fewer
iterations in which constraints are added, leading to a signifi-
cant speed-up while the additional overhead introduced by
the bootstrapping method remains small. This leads to better
scalability in both the number of states and the number of
objectives in MOMDPs, which is key in MOMDP planning.
Furthermore, we show that also in exact POMDP planning
significant speed-ups can be achieved. From a more general
perspective, our work and evaluation shows that LPs can be
solved more efficiently by exploiting existing information
from previous iterations, rather than solving each LP as a
stand-alone problem.

Background
In this section we provide a general introduction to value
iteration, MOMDPs, POMDPs and pruning of vectors.

MDPs and Value Iteration
A Markov Decision Process (MDP; Puterman 1994) con-
sists of a finite set of states S, a set of actions A, a re-
ward function R and a transition function T . When exe-
cuting action a ∈ A in the current state s, then the state
transitions to s′ ∈ S based on the probability distribu-
tion T (s, a, s′) = P (s′|s, a), and the reward R(s, a, s′) is
received. The goal is to maximize the expected discounted
sum of reward E[

∑∞
t=0 γ

tRt], where 0 ≤ γ < 1 is the dis-
count rate and Rt is the reward at time t. A solution to an
MDP consists of a policy π : S → A, dictating which action
should be executed in each state.

The quality of a policy can be expressed in terms of value
functions. The value V π(s) denotes the expected discounted
sum of reward when following policy π starting from state s.
It is defined as V π(s) = Eπ[

∑∞
t=0 γ

tRt | s0 = s]. The value
function V ∗ of an optimal policy π∗ satisfies the Bellman
optimality equation (Bellman 1957):

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)). (1)

The maximizing action a in the definition of V ∗(s) corre-
sponds to the optimal action to be executed in state s.

Optimal value functions and hence optimal policies can be
computed using value iteration algorithms. Value iteration
initializes a value function V0 and uses the Bellman opti-
mality equation as an update rule to generate a new value
function Vn+1 based on value function Vn. This is also known
as executing a backup operator H , such that Vn+1 = HVn,
where H is defined by right hand side of Equation 1. Ex-
ecuting a sequence of backups yields a sequence of value
functions, which is known to converge to a fixed point (i.e.,
Vn+1 = HVn = Vn). This occurs when the Bellman error
magnitude, maxs |Vn+1(s)− Vn(s)|, has become 0.

Partially Observable MDPs
A Partially Observable Markov Decision Process (POMDP;
Kaelbling, Littman, and Cassandra 1998) is an extension of
MDPs in which states cannot be observed directly. It aug-
ments the MDP model with an observation set O and obser-
vation function Ω. Rather than observing a state s′ directly

after executing action a, an observation o ∈ O is received
based on probability distribution Ω(a, s′, o) = P (o|a, s′).

Since an agent is unable to observe the state directly,
it maintains a belief b ∈ ∆(S) over states, which is up-
dated using Bayes’ rule. ∆(S) denotes the continuous
set of probability distributions over S, and is also called
the belief simplex. A POMDP can be seen as a belief-
state MDP, which is defined over beliefs rather than states.
Hence, an agent makes decisions based on a policy π :
∆(S)→ A, with the corresponding value function V π(b) =
Eπ [

∑∞
t=0 γ

tR(bt, π(bt)) | b0 = b] , where R(bt, π(bt)) =∑
s∈S R(s, π(bt))bt(s) and belief bt is the belief at time t.

This value function is similar to the MDP value function de-
fined earlier, but it is defined over beliefs rather than states. In
the definition POMDP rewards R(s, a) are not dependent on
the successor state s′. This assumption can be made without
loss of generality, because a reward function R(s, a, s′) can
be converted into a reward function R(s, a) by computing a
weighted average over all successor states s′.

In the finite-horizon setting value functions are piecewise
linear and convex, and they can be defined using a set of vec-
tors (Sondik 1971). We let V denote a set of vectors and V (b)
corresponds to the value of belief b, such that we can de-
fine V (b) = maxα∈V α·b. An optimal value function V ∗ can
be computed using a series of backups. The value function V0
can be initialized as V0(b) = maxa∈A

∑
s∈S R(s, a)b(s) =

maxa∈A b·αa0 , where αa0 is a vector such that the entry αa0(s)
denotes the immediate reward R(s, a), and the operator · de-
notes the inner product. Similar to MDPs, we can use the
following Bellman backup operator H to generate Vn+1 for
a given value function Vn:

HVn =
⋃
a∈A

Ga, with Ga =⊕o∈O Goa and

Goa =

{
1

|O|
αa0 + γgkao

∣∣∣∣ 1 ≤ k ≤ |Vn|
}
, (2)

where the operator⊕ denotes the cross-sum operator, which
can be defined as P ⊕ Q = {p + q | p ∈ P, q ∈ Q} for
two sets of vectors P and Q. The vector gkao is computed
by creating a back-projection gkao of the vector αkn from
value function Vn using action a and observation o: gkao(s) =∑

s′∈S P (o|a, s′)P (s′|s, a)αkn(s′).
Because the value function Vn+1 = HVn may contain

dominated vectors, it is more efficient to compute the backup
using HVn = prune

(⋃
a∈AGa

)
, where

Ga = prune
(
prune

(
Ḡ1
a⊕ Ḡ2

a

)
. . .⊕ Ḡ|O|a

)
, (3)

and Ḡoa = prune(Goa), following the incremental pruning
scheme (Cassandra, Littman, and Zhang 1997).

Multi-Objective MDPs
In a Multi-Objective Markov Decision Process (MOMDP;
Roijers et al. 2013), the reward function R(s, a, s′) is vector-
valued rather than scalar. This enables the modeling of prob-
lems with two or more objectives, for which preferences
between all possible trade-offs cannot be specified a priori.

Algorithm 1: Vector pruning (White & Lark)
input :vector set U
output :pruned set D (result after pruning U)

1 D ← ∅
2 while U 6= ∅ do
3 u← arbitrary element in U
4 if v � u,∃v ∈ D then
5 U ← U \ {u}
6 else
7 x←FindPoint(D,u)
8 if x = φ then
9 U ← U \ {u}

10 else
11 u← BestVector(x, U)
12 D ← D ∪ {u}
13 U ← U \ {u}
14 end
15 end
16 end
17 return D

In MOMDPs the values of policies are also vector-valued
rather than scalar. However, as vectors permit only a partial
ordering, the values of states, V ∗(s), become sets of value
vectors (Barrett and Narayanan 2008). Specifically, these sets
must contain an optimal value vector for every preference
or utility function, f , that a user might have. We focus on
the highly prevalent scenario (Roijers et al. 2013) in which
the utility function is a linear function, i.e., uw = f(u,w) =
w ·u, in which u is a value vector and w is a vector specifying
the relative importance of each objective. A set that has one
optimal value vector for every possible w, is called a Convex
Coverage Set (CCS) or Convex Hull (CH).

Convex Hull Value Iteration (CHVI) is an exact MOMDP
planning algorithm (Barrett and Narayanan 2008) that itera-
tively applies an updated backup operator until convergence:

HVn(s) =

prune

(⋃
a∈A
⊕
s′∈S

T (s, a, s′)(R(s, a, s′) + γVn(s′))

)
, (4)

where R(s, a, s′) is a single vector, Vn(s′) is a set of vec-
tors, and the + operator translates all the vectors in γVn(s′)
by R(s, a, s′). However, the resulting set can contain excess
vectors, i.e., vectors that are not necessary to build a CH. Sim-
ilar to POMDPs, such vectors are removed using a pruning
operator prune. This operator removes excess value vectors
w.r.t. optimality for all w. Note that this is the same operator
as needed to remove excess vectors w.r.t. optimality for all b
in POMDPs, and pruning can also executed incrementally as
in the incremental pruning algorithm for POMDPs.

Pruning Vectors
Vector pruning works identically for both MOMDPs and
POMDPs. Value functions of MOMDPs are a function of

Algorithm 2: FindPoint(ICG) – computes the
point in which v improves U the most (Walraven and
Spaan 2017)

input :vector set U , vector v
output :point x or symbol φ

1 if |U | = 0 then
2 return arbitrary point x
3 end
4 `← length of vector v
5 define the following LP:
6 max d∗

7 s.t.
∑`
i=1 xi = 1

8 xi ≥ 0 i = 1, . . . , `
9 d∗ free

10 choose an arbitrary point x′
11 do
12 x̄← x′

13 û← arg minu∈U {(v − u) · x̄}
14 add d∗ ≤ (v − û) · x to the LP
15 solve the LP to obtain point x′

16 while x′ 6= x̄;
17 d̄← last objective d∗ found
18 return x̄ if d̄ > 0 and φ otherwise

weight vectors w, and value functions of POMDPs are a func-
tion of beliefs b. In order to provide a general introduction to
pruning, we refer to either of them as a point x.

The subroutine prune can be implemented using a
method proposed by White and Lark (White 1991), as shown
in Algorithm 1. The symbol � denotes that vector v fully
dominates u. The subroutine BestVector returns the vec-
tor in U with the maximum value in point x (Littman 1996).
The subroutine FindPoint(U, v) uses linear programming
to find a point at which value function U improves the most
if vector v is added to U . An example is shown in Figure 1a,
where the solid lines represent vectors u ∈ U and the vector v
is represented by the dashed line. It can be seen that adding
vector v to U does improve the value function the most at
the highlighted point. Figure 1b visualizes the feasible region
of the corresponding LP, where each line corresponds to a
constraint d∗ ≤ (v − u) · x. The shaded area represents the
feasible region of the LP, and the arrow indicates the direc-
tion of optimization. Hence, the corner represented by the
dot corresponds to the optimal solution of the LP.

The LP in FindPoint can be solved directly based on all
constraints, but it has been shown that this procedure can be
implemented more efficiently by generating LP constraints
incrementally (Walraven and Spaan 2017). This method is
shown in Algorithm 2 and also determines whether adding
vector v to the set U improves the value function induced
by U . It generates the constraints incrementally until an op-
timal solution has been found. We refer to this method as
Incremental Constraint Generation (ICG). An attractive prop-
erty of ICG is that it does not necessarily generate all con-
straints. In other words, the algorithm may terminate before
enumerating all constraints of the LP. An example is shown

(1,0) (0,1)

0.7

0.8

0.9

1

x

V
a
lu

e v

(a) Value function U and vector v

(1,0) (0.18,0.82) (0,1)

−0.4

−0.2

0

0.2

0.4

0.6

x

O
bj

ec
tiv

e
d

feasible region

*

*

(b) Feasible region of the LP

(1,0) (0,1)

−0.4

−0.2

0

0.2

0.4

0.6

x

O
bj

ec
tiv

e
d

feasible region

*

opt

(c) Bootstrapping constraints

Figure 1: Value function U and vector v, the corresponding LP and a bootstrapping example

in Figure 1b, in which the constraints labeled by the stars do
not intersect in the corner corresponding to the optimal solu-
tion. Such constraints are not strictly necessary to define an
optimal LP solution, and they do not need to be enumerated.
Prior to solving it is unknown whether a constraint needs
to be enumerated, because this requires a priori knowledge
about the optimal solution of the LP.

Bootstrapping LP Solutions
Previous approaches to make LP-based pruning faster rely on
alternative LP formulations for pruning (Feng and Zilberstein
2004). Such formulations have had a significant positive
impact on the number of the LPs or the speed with which they
are solved. However, until now LPs have always been solved
in isolation. Our key insight is that we can share information
across multiple LPs in different iterations in VI. We observe
that LP solutions get increasingly similar when value iteration
algorithms converge, and we show how an initial subset of
LP constraints can be initialized based on similar LPs from
previous iterations of VI, such that Algorithm 2 does not
need to start with an empty constraint set when generating
constraints incrementally.

Analysis
In this section we consider two successive value func-
tions Vn−1 and Vn. Note that this differs slightly from the
value function introduction in the background section, where
we used Vn and Vn+1. An important observation about value
iteration is that as the iterations in value iteration progress, the
Bellman error magnitude (i.e., the maximum difference be-
tween two successive value functions) becomes smaller (Put-
erman 1994). In MDPs this is across all states, in MOMDPs
across all states and weight vectors, and in POMDPs across
all beliefs. Therefore, we expect the set of value vectors Vn in
incremental pruning to contain increasingly similar vectors
to Vn−1. To identify which vectors need to be retained in Vn,
Algorithm 1 incrementally builds up this set. Starting from
an empty set, this algorithm identifies a point, x, for which
a candidate vector is possibly optimal. The best vector for
that x is added to Vn. To identify x, Algorithm 2 solves a
series of LPs with an increasing number of constraints.

Firstly, we observe that the points identified by Algo-
rithm 2 become increasingly similar during the execution of

value iteration. We consider a vector vn−1 in iteration n− 1
and a vector vn in iteration n. Both vectors are used as input
to the ICG LP (Algorithm 2) as the candidate vector and
if the vectors are similar then the identified point returned
by Algorithm 2 will be similar too. In other words, similar
vectors in two successive value functions will be optimal for
similar beliefs. This is because VI converges to a fixed point
of the value function, which is a convex set of vectors. In our
observation we implicitly make the assumption that the prun-
ing algorithm always considers the vectors in a specific (e.g.,
lexicographic) order, which we further discuss later.

Secondly, we make use of the observation that there are
only a handful of constraints, Cprev , that ultimately constitute
the solution of the LP (Walraven and Spaan 2017), as illus-
trated in Figure 1b. These can be identified easily (following
the notation of Algorithm 2) as:

Cprev = arg min
u∈U

(v − u) · x∗, (5)

where x∗ is the ultimately returned point. Note that Cprev
contains vectors corresponding to the constraints intersecting
in x∗. For the example this would be the vectors intersecting
in the dot in Figure 1a. Since there is a direct correspondence
between vectors and constraints, we will use both terms in-
terchangeably if the meaning is clear from context.

By combining the two observations we hypothesize that
we can reuse Cprev for other vectors similar to vector v. We
consider iteration n− 1, in which FindPoint(ICG) was
called with a vector set Un−1 and a vector vn−1. If the same
function is called in iteration n with vector set Un and a
similar vector vn, then we select the closest vectors from the
new set Un (according to Euclidean distance) to initialize the
LP in iteration n:

Cinit =
⋃

vn−1∈Cprev

arg min
vn∈Un

|vn − vn−1|. (6)

This set contains vectors from Un similar to the vectors
from Un−1 which correspond to the constraints defining the
optimal LP solution for vn−1.

As an example we consider the LP shown in Figure 1b.
Suppose that ICG solves this LP and finds the solution indi-
cated by the dot. Now suppose that we encounter a similar LP
in a subsequent iteration of incremental pruning, as shown in

Algorithm 3: FindPoint(BLP) – computes the
point in which v improves U the most

input :vector set U , vector v, and a context iteration
number n, and context element θ

output :point x or symbol φ

1 if |U | = 0 then
2 return arbitrary point x
3 end
4 `← length of vector v
5 vn−1, Cn−1, x′ ← arg min

(v′,C,x′)∈cache(n−1,θ)
|v − v′|

6 Cinit ←
⋃

c∈Cn−1

arg min
u∈U

|c− u|

7 define the following LP:
8 max d∗

9 s.t.
∑̀
i=1

xi = 1, xi ≥ 0 ∀i = 1, . . . , `,

10 d∗ ≤ (v − û) · x ∀û ∈ Cinit
11 do
12 x̄← x′

13 û← arg minu∈U {(v − u) · x̄}
14 add d∗ ≤ (v − û) · x to the LP
15 solve the LP to obtain point x′

16 while x′ 6= x̄;
17 Cprev ← arg minu∈U (v − u) · x̄
18 add (v, Cprev, x̄) to the cache(n, θ)

19 d̄← last objective d∗ found
20 return x̄ if d̄ > 0 and φ otherwise

Figure 1c. In the figure each line corresponds to a constraint,
and the feasible region is the area below the lines. In this case
we would like to initialize constraints which are likely to be
intersecting in the optimal LP solution. Therefore our boot-
strapping technique initializes the LPs with the constraints
shown as a bold solid line, as these constraints are similar
to the constraints intersecting in the optimal solution in the
previous iteration (see Figure 1b). In the new LP the optimal
solution (indicated by opt) is slightly different compared to
the previous LP, and BLP needs to add only one more con-
straint (labeled ∗). This is beneficial, as ICG would start from
an empty LP, and iterates multiple times before reaching the
same solution.

It is important to note that initialization of constraints
based on Cinit never shrinks the feasible region of the LP
too much. The reason is that the constraints defined by Cinit
correspond to vectors from the current vector set Un, rather
than vectors from a previously solved LP. In other words:
the algorithm always initializes constraints that are valid
constraints in the LP that is currently being solved.

Vector Pruning Algorithm
To perform bootstrapping, we need to store and retrieve Cprev .
Furthermore, we observe that constraints and solutions that
can be reused are context-dependent. For MOMDPs, this con-

text is a state transition (s, a, s′). For POMDPs, the context
is the (a, o)-pair of the Ḡoa set that has just been added to
the cross-sum in Equation 3. To integrate context-dependent
bootstrapping we make the following changes, leading to a
new algorithm that we call BLP.

First, the prune subroutine is implemented as an adapted
version of Algorithm 1, with the following modifications:
it is now parameterized by n, and context element θ (the
transition (s, a, s′) for MOMDPs and an action-observation-
pair (a, o) for POMDPs), which it passes to our new sub-
routine to identify points while reusing LP information,
FindPoint(BLP), as implemented in Algorithm 3 (re-
placing Algorithm 2). This algorithm is described in the next
section. On the top level, i.e., the prune call after the union
over all sets, we use s in as the context in MOMDPs, and
null in POMDPs.

Second, we ensure that the vectors that need to be pruned
are lexicographically ordered. That is, each time Algorithm 1
is called on a set of vectors, U , we sort the set. Consistency in
this sorting is crucial for our first observation in the previous
section, as the order in which Algorithm 1 considers the
vectors, influences the sequence of arguments FindPoint
(U and v) is called with.

Point-Finding Algorithm
We now describe how bootstrapping is integrated in the orig-
inal point-finding algorithm used by the pruning algorithm.
The key improvement of our BLP algorithm over ICG is how
it solves LPs by bootstrapping off the LPs from previous
iterations, as specified in Algorithm 3.

First, BLP retrieves the relevant constraints from the pre-
vious iteration (n− 1). It does this by matching the closest
vector, v′ from the cache with the same context, (a,o) or
(s,a,s′), from the previous iteration on line 5. Aside from v′,
the constraints Cn−1 in the form of vectors from the previous
iteration and the point that was optimal for the correspond-
ing LP are also retrieved. If this is the first iteration, i.e.,
the cache is empty, we use a vector of zeroes, an empty set
of constraints and a random point as default. Because Cn−1
is in the form of vectors we can match the closest vectors
from U in the current iteration, n, on line 6. These vectors
are stored in a set, Cinit, and used to the initialize the con-
straints of the LP on line 10. The initial constraints are of the
form: d∗ ≤ (v − û) · x, where v is the input vector, and û is
a vector in Cinit. After constructing the initial LP, BLP gen-
erates the constraints incrementally until an optimal solution
has been found, as in FindPoint(ICG) (Algorithm 2) on
lines 11–16. This leads to the final solution x̄ of the LP.

Given the LP solution x̄, the method FindPoint(BLP)
retrieves and stores constraints and x̄ itself, for reuse in sub-
sequent iterations. The constraints, Cprev are those u ∈ U
that are optimal for x̄ (line 17). This is stored in the cache
(line 18) before returning x̄ if there is a point for which v is
an improvement over U , or φ if there is not.

Discussion
BLP introduces overhead in the form of bookkeeping neces-
sary to match the contexts and the similar constraints. Further-
more, sorting induces extra work: sorting isO(|S||U | log |U |)

10
−2

10
0

0

50

100

Bellman error

L
P

 r
e
d
u
c
ti
o
n
 (

%
)

(a) 45-state-2-obj. R-MOMDP

10
0

0

50

100

Bellman error

L
P

 r
e
d
u
c
ti
o
n
 (

%
)

(b) G-DST (MOMDP)

10
−2

10
0

0

50

100

Bellman error

L
P

 r
e
d
u
c
ti
o
n
 (

%
)

(c) Network (POMDP)

10
−2

10
0

0

50

100

Bellman error

L
P

 r
e
d
u
c
ti
o
n
 (

%
)

(d) Shuttle (POMDP)

Figure 2: Reduction of the number of LPs as a function of
the residual Bellman error.

for POMDPs and O(c · |U | log |U |) for MOMDPs, where c
is the number of objectives. Hence, it is not clear a priori
that it will always be faster than ICG, or even White and
Lark’s pruning. However, we expect that our method will
get increasingly better as the number of iterations performed
increases, i.e., as the magnitude of the Bellman error goes
down. We show this empirically in the next section. Finally,
it should be noted that BLP does not change the solutions
computed by the MOMDP and POMDP algorithms, since the
calls to FindPoint and the corresponding output remain
identical.

Experiments
In this section we present the results of our experimental
evaluation for both MOMDPs and POMDPs.

Problem Domains
For all POMDP experiments we use benchmark domains
from pomdp.org, which provides several standard domains
that are typically used to evaluate POMDP algorithms.

For MOMDPs we first consider randomly generated
MOMDPs with limited underlying structure as specified in
the MORL-Glue benchmark suite (Vamplew et al. 2017). A
transition matrix T (s, a, s′) is generated using N = 3 pos-
sible successor states per action, with random probabilities
drawn from a uniform distribution. There are |A| = 3 actions,
and a varying number of objectives. To ensure that every state
is reachable from every state, it is enforced that for every state
with a number x, x+1 mod |S| is one of the successor states
for one of the actions.

The second domain we consider is Generalized Deep Sea
Treasure (G-DST) (Vamplew et al. 2017), which is a generali-
sation of the popular grid-shaped deep sea treasure MOMDP
benchmark (Vamplew et al. 2011). In the G-DST benchmark
a submarine receives a reward for reaching a treasure on the
bottom of the sea (objective 1), while receiving a −1 fuel

10
−2

10
0

70

80

90

100

Bellman error

B
o
o
ts

tr
a
p
 h

it
s
 (

%
)

(a) 45-state-2-obj. R-MOMDP

10
−2

10
0

80

85

90

95

100

Bellman error

B
o
o
ts

tr
a
p
 h

it
s
 (

%
)

(b) G-DST (MOMDP)

10
−2

10
0

40

60

80

100

Bellman error

B
o
o
ts

tr
a
p
 h

it
s
 (

%
)

(c) Network (POMDP)

10
−2

10
0

40

60

80

100

Bellman error

B
o
o
ts

tr
a
p
 h

it
s
 (

%
)

(d) Shuttle (POMDP)

Figure 3: Average percentage of constraints successfully
added due to bootstrapping (as function of the Bellman error).

reward (objective 2) for every move. The treasures have dif-
ferent values and are placed at various depths on the bottom
of the sea. There are four actions (up, down, left, and right),
which move in the corresponding direction in the grid, with
probability p = 0.8 and again in a random direction with
probability 1− p = 0.2. The agent starts in the top-leftmost
square in the grid. The number of states in G-DST can be
changed by adjusting the number of columns in the grid, with
the restriction that a column is as deep or deeper than the
column to its left (i.e., has more more vertical positions).

Number of LPs solved
In our discussion in the previous section we observed that
BLP introduces additional overhead due to additional book-
keeping, and that we expect that our method performs better
as the Bellman error becomes smaller. In this section we
experimentally confirm this claim. We execute CHVI (for
MOMDPs) and Incremental Pruning (for POMDPs) com-
bined with BLP and measure the reduction in the number
of LPs in each iteration of incremental pruning and CHVI
(by comparing with ICG). As the Bellman error magnitude
becomes smaller during these iterations, we can derive a rela-
tionship between the Bellman error and the reduction of the
number of LPs.

Figure 2 shows the LP reduction realized by BLP as a func-
tion of the Bellman error for several domains. As the Bellman
error goes down during the execution of incremental pruning,
we reversed the x-axis and we use a log scale. A reduction
of 40 percent means that BLP solves 40 percent fewer LPs
compared to ICG in the same iteration. The experiment con-
firms our claim that the performance of BLP improves when
the Bellman error becomes smaller and it confirms that BLP
leads to a major reduction of the total number of LPs solved.
Note that the reduction will never reach 100 percent, as this
would correspond to eliminating all LPs, which is impossible.
In our experiments the overhead of bookkeeping is typically
around 5% of the total running time.

ICG BLP
Domain Time (s) #LPs Time (s) #LPs

Tiger 2.6 41k 2.1 23k
Marking 3.9 37k 3.5 26k
Partpainting 4.3 57k 3.7 41k
Marking2 4.5 43k 3.9 30k
Stand.Tiger 251.0 3595k 203.6 1944k
Shuttle 430.0 3108k 380.8 2251k
Network 692.2 6038k 595.4 4018k
4x5x2 779.6 1326k 769.6 952k

Table 1: Comparison ICG and BLP on various POMDPs

Bootstrapping Performance
Next, we study whether BLP adds relevant constraints based
on the information from the previous iteration. To be more
precise, we study whether Algorithm 3 adds constraints on
line 10 based on Cinit, which would have been added itera-
tively by Algorithm 2 as well. If this is the case, it means that
BLP successfully uses information from a previous iteration
to initialize LPs in a new iteration. We execute Algorithm 3
(BLP) and Algorithm 2 (ICG) in parallel to measure the per-
centage of constraints BLP adds based on bootstrapping that
are also added by ICG. We refer to this metric as bootstrap
hits, which we report in Figure 3 as an average over the LPs
solved in an iteration of value iteration.

We observe that our bootstrapping strategy adds more con-
straints that ICG would also add when the Bellman error
becomes smaller. Intuitively, this can be explained by the
observation that value functions and hence LPs become more
similar when VI algorithms converge. The relatively large
proportion of hits at the start of the curves can be explained
by observing that there are few vectors during the first few it-
erations, and thus only a few possible LP constraints. For the
results in Figure 3 we found that the standard deviation of the
hits is typically around 20 percent. This may seem relatively
large, but this can be explained by observing that, for exam-
ple, perfect hits in small-sized LPs correspond to 100 percent,
which slightly increases the standard deviation. We conclude
that, confirming our expectations, the performance bootstrap-
ping becomes better when the Bellman error decreases, and
BLP successfully uses information from previous iterations
to accelerate LP solving in subsequent iterations.

Runtime Performance
Now that we have tested how effective BLP is in reducing
the amount of LPs compared to ICG, we test how the runtime
and the number of solved LPs of BLP compare to ICG as
well as White and Lark’s algorithm (Algorithm 1), which we
refer to as WL. We test both on POMDPs and on MOMDPs.

First, we compare incremental pruning for POMDPs com-
bined with ICG (Algorithm 2) and incremental pruning com-
bined with BLP (Algorithm 3) on the same benchmarks
as Walraven and Spaan (2017). For clarity we use ICG and
BLP to refer to the respective methods. We do not compare
with WL in this experiment. We kindly refer to Walraven
and Spaan (2017) for this comparison. We execute incremen-

WL ICG BLP
Domain Time (s) Time (s) #LPs Time (s) #LPs

5s 2a 2o 3.2 3.7 35k 3.1 22k
5s 2a 2o 4.6 6.0 62k 4.7 33k
5s 2a 3o 154.6 127.2 1763k 101.3 817k
5s 2a 3o 307.4 263.7 3604k 191.2 1442k
5s 2a 4o 143.8 131.8 1775k 120.2 1171k
5s 2a 4o 1687.3 940.9 13070k 867.4 8293k
7s 3a 2o 13.3 18.3 285k 13.7 125k
7s 3a 2o 28.2 35.5 434k 24.9 169k
7s 3a 3o 1066.8 833.2 10608k 619.4 5096k
7s 3a 3o 1637.0 1068.7 15010k 814.2 6437k

Table 2: Comparison WL, ICG and BLP, on Random
MOMDPs with varying numbers of states (s) actions (a)
and objectives (o). Instances with the same number of states,
actions and objectives are generated with different seeds.

10 20 30 40 50
0

500

1000

1500

#states

R
u

n
ti
m

e
 (

s
)

4 6 8 10 12 14
0

1000

2000

3000

#states

R
u

n
ti
m

e
 (

s
)

Figure 4: Runtime as a function of the number of states, for
(left) 2-objective random MOMDPs with 3 actions, 3 possible
successor states, (right) randomly drawn G-DST instances
with a variable number of states. Lines indicate CHVI+WL
(grey), CHVI+ICG (dashed) and CHVI+BLP (solid).

tal pruning until the Bellman error drops below 0.02, and
the reported running times are an average based on 10 in-
dependent runs. Due to the size of the domains we used an
error tolerance of 0.05 for the Standing Tiger domain, and
in the 4x5x2 domain we could only execute 14 iterations.
The results are shown in Table 1, which reports the running
times and the total number of LPs solved. We observe that
reusing information about LPs from previous iterations of
value iteration leads to a reduction of the running time, and a
significant reduction of the running time in several domains.

Second, we compare the runtime of BLP to WL and ICG
as a function of the size of the state space for Random 2-
objective MOMDPs (Figure 4 left), and for G-DST instances
(Figure 4 right), which also have 2 objectives. For both 2-
objective Random MOMDPs and G-DST it is apparent that
ICG does not improve the runtime compared to WL. In other
words, just iteratively adding constraints does not lead to
more effective pruning. BLP on the other hand effectively
reuses the constraints between iterations, leading to signifi-
cant speed-ups; for 2-objective Random MOMDPs with 10
states CHVI with BLP uses 91 percent of the runtime of
CHVI with WL (45s versus 51s), at 35 states only 72 percent
(499s versus 690s), and at 50 states only 63 percent (1014s
versus 1606s). That BLP is significantly faster than ICG can

be explained by the effectiveness of reuse, at 10 states BLP
needs only solve 42 percent of the number of LPs that ICG
does (354k versus 840k), and at 50 states only 33 percent
(7.4 mln versus 22.5 mln). We thus conclude that CHVI with
BLP scales much better in the number of states than CHVI
with WL, while CHVI with ICG does not.

That ICG does not improve the runtime for 2-objective
MOMDPs is an interesting observation; for POMDPs Wal-
raven and Spaan (2017) show that this is extremely effective.
However, we note that in MOMDPs the total number of LPs
is much larger than in POMDPs (compare, e.g., the num-
bers of LPs for 50-state MOMDPs—BLP: 7.4 mln, ICG:
22.5 mln—with POMDPs in Table 1) while the value vectors
are much shorter in these MOMDPs (i.e., length 2) than in
POMDPs (i.e., the number of states in the POMDP).

To compare the runtime of WL, ICG and BLP for an in-
creasing number of objectives, we test the algorithms on
several individual instances in Table 2, with a small num-
ber of states and actions (i.e., 5 and 2, and 7 and 3). Note
that instances with the same size have been generated with
a different seed. The results show that for the 2-objective
problems, ICG is significantly slower than WL and BLP, and
WL is still on par with BLP, as we also show in Figure 4.
This is because for 5 and 7 states and only two objectives, the
overhead needed for adding the LP constraints sequentially is
still relatively high. BLP reduces this overhead significantly
with respect to ICG, but not enough to make it significantly
faster than WL. When the number of objectives is larger than
two, ICG becomes faster than WL. However, BLP scales best
in the number of objectives, and can almost halve the runtime
w.r.t. WL in the two most difficult instances we tested.

In conclusion, for POMDPs, BLP is faster than the state-
of-the-art ICG in all instances we tested, and much faster
in some instances. For MOMDPs, BLP is much faster than
WL and ICG, and scales better in both the number of states
and the number of objectives, making this method a key
improvement to MOMDP planning.

Related Work
Our work is related to region-based pruning (Feng and Zilber-
stein 2004), which uses different LPs to detect vector dom-
inance, and exploits information about the cross sum when
creating these LPs. The number of constraints in these LPs is
polynomial in the size of the vector sets, rather than exponen-
tial in the worst case. In contrast to our work, the number of
LPs remains the same. Another related pruning approach is
Skyline (Raphael and Shani 2012), which traces the surface
of the value function. ICG outperforms both region-based
pruning and Skyline (Walraven and Spaan 2017).

Incremental construction of constraint sets has also been
used in the approximate POMDP algorithm α-min (Dujardin,
Dietterich, and Chadès 2015). It uses a mixed-integer prob-
lem in which so-called facets are generated incrementally,
which resembles constraint generation. ICG and BLP select
constraints from a known set of constraints, whereas the
facets in α-min are used to approximate a set of constraints
that is initially unknown. The latter is computationally more
difficult, and both ICG and BLP do not need to rely on such a
procedure since the constraint set is finite and already known.

Our work is related to decomposition approaches for linear
programs, such as row and column generation (Benders 1962;
Gilmore and Gomory 1961). Rather than solving an LP di-
rectly, such approaches decompose an LP into smaller parts to
improve tractability of solving. Algorithm 2 has been derived
using such a decomposition technique. Row and column gen-
eration also found applications in Factored MDPs (Guestrin
and Gordon 2002) and security games (Jain et al. 2010), as
well as heuristic search for stochastic shortest path prob-
lems (Trevizan et al. 2016). The latter uses heuristics to guide
how an LP should be expanded with variables and constraints.
An important difference in our work is that we bootstrap from
a previous LP, rather than expanding one individual LP.

For MOMDPs our paper focuses on finding a convex hull
(CH), which is the optimal solution set for linear utility func-
tions with unknown weights. For such problems two types
of algorithms exist (Roijers and Whiteson 2017): outer loop
methods and inner loop methods. Outer loop methods work
by using a single-objective solver, and solving scalarized
instances of MOMDPs, i.e., MDPs, to construct an (approx-
imate) CH (Roijers, Whiteson, and Oliehoek 2015). This
typically scales well in the number of states. In this paper we
focussed on improving inner loop methods, which employ
operators like cross-sum and pruning, to make Bellman back-
ups work with sets of value vectors. Such methods typically
scale much better in the number of objectives.

Conclusion
We proposed Bootstrap LP (BLP), a method for speeding
up value iteration (VI) algorithms that require maintaining
sets of value vectors, such as CHVI for MOMDPs and in-
cremental pruning for POMDPs. Our key insight is that LP
constraints that led to the final solutions in an iteration of VI
can be reused to speed up the LPs in the next iteration. We
have shown that BLP improves the state-of-the-art ICG algo-
rithm (Walraven and Spaan 2017) for incremental pruning in
POMDPs. Moreover, we have shown that where ICG fails to
improve over simpler pruning algorithms for MOMDPs, i.e.,
White and Lark’s (1991), BLP achieves significant speed-ups.
For MOMDPs, BLP scales much better in the number of
states and objectives, making BLP an important advancement
of the state-of-the-art in MOMDPs. Finally, because our BLP
works well for both MOMDPs and POMDPs, we believe that
BLP would speed up any LP-based VI algorithm.

We aim to extend our work to reinforcement learning in
MOMDPs and investigate the effects of LP reuse in model-
free (Hiraoka, Yoshida, and Mishima 2009) and model-
based (Wiering, Withagen, and Drugan 2014) approaches.
We expect that especially in model-based approaches where
the MOMDP model, i.e., the transition and reward func-
tions, is incrementally updated with the added interactions
with the environment, bootstrapping LPs from the planning
step before a given model update can drastically improve
performance. This would be in addition to bootstrapping
the LPs from previous iterations within a given planning
step. Furthermore, we aim to create methods that produce a
bounded approximate solution based on bootstrapping LPs
for both POMDPs and MOMDPs, building on methods like
EVA (Varakantham et al. 2007).

Acknowledgments
Diederik M. Roijers is a postdoctoral fellow of the Research
Foundation – Flanders (FWO). The research by Erwin Wal-
raven is funded by the Netherlands Organisation for Scientific
Research (NWO), as part of the Uncertainty Reduction in
Smart Energy Systems (URSES) program.

References
Barrett, L., and Narayanan, S. 2008. Learning all optimal
policies with multiple criteria. In ICML, 41–47.
Bellman, R. E. 1957. Dynamic Programming. Princeton
university press.
Benders, J. 1962. Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik
4(1):238–252.
Cassandra, A. R.; Littman, M. L.; and Zhang, N. L. 1997.
Incremental Pruning: A Simple, Fast, Exact Method for Par-
tially Observable Markov Decision Processes. In UAI.
Dujardin, Y.; Dietterich, T.; and Chadès, I. 2015. α-min: A
Compact Approximate Solver For Finite-Horizon POMDPs.
In IJCAI, 2582–2588.
Feng, Z., and Zilberstein, S. 2004. Region-based incremental
pruning for POMDPs. In UAI, 146–153.
Gilmore, P. C., and Gomory, R. E. 1961. A Linear Program-
ming Approach to the Cutting-Stock Problem. Operations
Research 9(6):849–859.
Guestrin, C., and Gordon, G. 2002. Distributed Planning in
Hierarchical Factored MDPs. In UAI, 197–206.
Hiraoka, K.; Yoshida, M.; and Mishima, T. 2009. Parallel re-
inforcement learning for weighted multi-criteria model with
adaptive margin. Cognitive Neurodynamics 3:17–24.
Jain, M.; Kardes, E.; Kiekintveld, C.; Ordónez, F.; and Tambe,
M. 2010. Security Games with Arbitrary Schedules: A
Branch and Price Approach. In AAAI, 792–797.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1):99–134.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In ICML, 157–163.
Littman, M. L. 1996. Algorithms for Sequential Decision
Making. Ph.D. Dissertation, Brown University.
Littman, M. L. 2001. Friend-or-foe Q-learning in general-
sum games. In ICML, 322–328.
Puterman, M. L. 1994. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. New York, NY: John
Wiley & Sons, Inc.
Raphael, C., and Shani, G. 2012. The Skyline algorithm for
POMDP value function pruning. Annals of Mathematics and
Artificial Intelligence 65(1):61–77.
Roijers, D. M., and Whiteson, S. 2017. Multi-objective
decision making. Synthesis Lectures on Artificial Intelligence
and Machine Learning 11(1):1–129.
Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley,
R. 2013. A survey of multi-objective sequential decision-
making. JAIR 48:67–113.

Roijers, D. M.; Whiteson, S.; and Oliehoek, F. A. 2015.
Computing convex coverage sets for faster multi-objective
coordination. JAIR 52:399–443.
Sondik, E. J. 1971. The optimal control of partially ob-
servable Markov processes. Ph.D. Dissertation, Stanford
University.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams,
B. C. 2016. Heuristic search in dual space for constrained
stochastic shortest path problems. In ICAPS, 326–334.
Vamplew, P.; Dazeley, R.; Berry, A.; Dekker, E.; and Iss-
abekov, R. 2011. Empirical evaluation methods for multiob-
jective reinforcement learning algorithms. Machine Learning
84(1-2):51–80.
Vamplew, P.; Webb, D.; Zintgraf, L. M.; Roijers, D. M.;
Dazeley, R.; Issabekov, R.; and Dekker, E. 2017. MORL-
Glue: A benchmark suite for multi-objective reinforcement
learning. In BNAIC, 389–390.
Varakantham, P. R.; Maheswaran, R.; Gupta, T.; and Tambe,
M. 2007. Towards efficient computation of quality bounded
solutions in POMDPs: Expected value approximation and
dynamic disjunctive beliefs. In IJCAI, 2638–2643.
Walraven, E., and Spaan, M. T. J. 2017. Accelerated Vector
Pruning for Optimal POMDP Solvers. In AAAI, 3672–3678.
White, C. C. 1991. A survey of solution techniques for
the partially observed Markov decision process. Annals of
Operations Research 32(1):215–230.
Wiering, M. A.; Withagen, M.; and Drugan, M. M. 2014.
Model-based multi-objective reinforcement learning. In
IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning.

