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Abstract. Renewable energy sources introduce uncertainty regard-

ing generated power in smart grids. For instance, power that is gener-

ated by wind turbines is time-varying and dependent on the weather.

Electric vehicles will become increasingly important in the develop-

ment of smart grids with a high penetration of renewables, because

their flexibility makes it possible to charge their batteries when re-

newable supply is available. Charging of electric vehicles can be

challenging, however, because of uncertainty in renewable supply

and the potentially large number of vehicles involved. In this paper

we propose a vehicle aggregation framework which uses Markov

Decision Processes to control electric vehicles and deals with un-

certainty in renewable supply. We present a grouping technique to

address the scalability aspects of our framework. In experiments we

show that the aggregation framework maximizes the profit of the

aggregator, reduces cost of customers and reduces consumption of

conventionally-generated power.

1 INTRODUCTION
The emergence of renewable energy sources in electricity grids is

accompanied by several challenges [29]. For instance, power produced

by solar panels and wind turbines is dependent on the weather and

may cause power production peaks outside the secure range of the

grid. Moreover, when many consumers use cheap electricity when

renewables have a high output, the grid may become significantly

congested. Traditionally such problems were addressed by expensive

reinforcements of the grid, but this can be very costly [34]. A recent

development is intelligently controlling generation and consumption

of local consumers, and thereby creating a smart distribution grid.

Smart distribution grids offer several opportunities and challenges

for the field of Artificial Intelligence, such as planning and scheduling

of charging of electric vehicles [24]. In order to reduce peak loads and

exploit locally produced renewable energy, such as small-scale wind

power, shifting flexible electric vehicle charging demand to periods

with sufficient renewable supply requires planning algorithms for so-

called aggregators. These aggregators are entities in smart distribution

grids responsible for coordinating a large number of vehicles, and

need to be able to deal with uncertain information regarding the

availability of renewable supply.

In this paper we consider uncertain wind power production com-

bined with the need to coordinate charging of a large number of

electric vehicles (EVs), to take advantage of renewable energy and to

reduce consumption of conventionally-generated power. To make sure

that vehicles charge their batteries when renewable supply is available,

we present an aggregation framework based on the Multiagent Markov
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Decision Process (MMDP) formalism [5]. The development of such a

framework poses challenges related to the number of agents involved

and the uncertainty associated with renewable energy sources. The

first challenge is the main topic of this paper, and for the second

challenge we build upon recent work related to modeling uncertainty

of renewables [35].

Our main contributions can be summarized as follows. First, we

present an electric vehicle aggregation framework which coordinates

charging of collection of EVs using MMDPs. Second, we describe

how the computation of value functions can be combined with tree-

based representations of uncertainty in renewable wind power, such

that the aggregation framework naturally accounts for uncertainty in

renewable supply. Third, we develop an abstraction of the original

MMDP which groups vehicles based on deadlines to keep the number

of joint states and actions manageable when increasing the number of

vehicles. We show how the enumeration of MMDP states and actions

can be limited to reduce the number of enumerated states and actions

during the computation of value functions.

In experiments based on realistic data we show that our aggregation

framework is able to optimize the profit of an aggregator while re-

ducing cost of individual consumers. Moreover, we show that electric

vehicles are charging when renewable supply is available, such that

consumption of conventionally-generated grid power is reduced. The

experiments also show that the group-based abstraction makes our

framework sufficiently scalable to control vehicles in a realistically-

sized street or a small neighborhood.

The structure of the paper is as follows. In Section 2 we introduce

background information about aggregation in smart grids, wind fore-

casting and Markov Decision Processes. Section 3 formalizes the

aggregated electric vehicle charging problem. We present the cor-

responding MMDP formulation in Section 4, and in Section 5 we

discuss an abstraction of the MMDP to improve scalability. Section 6

describes our experimental results, and the remaining sections discuss

related work and our conclusions.

2 BACKGROUND
In this section we provide background information about aggregation

in smart grids, wind forecasting and Markov Decision Processes.

2.1 Aggregators in Smart Grids
Aggregators in electricity grids are new entities that are acting be-

tween individual customers and the utility company [13]. From the

perspective of the utility company, an aggregator represents a large

number of vehicles that require power to charge their batteries. EVs

provide a certain amount of flexibility since typically they do not need

to be charged immediately.
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The flexibility of EVs can be used to address grid congestion prob-

lems. For example, during the early morning and the evening the

total power demand is high since many people are at home. Current

distribution grids have sufficient capacity to deal with the demand of

conventional devices during such periods. However, a large number of

EVs require a significant amount of power for charging, for which the

capacity may not be sufficient [21, 30]. Flexibility of EVs can be used

to address this problem, since EV demand can be shifted to periods

in which either renewable power supply or sufficient grid capacity

is available [2]. Since demand shifting for a large number of EVs

requires coordination, aggregators have been proposed to control flex-

ible demand of a large number of EVs. An aggregator is responsible

for the communication technology between it and the charging points,

allowing for direct control and coordination of vehicles connected to

the network.

Individual customers can be incentivized to participate in aggre-

gated charging of vehicles by providing a financial compensation. For

instance, customers can sell their flexibility and get a lower charging

tariff in return. From an aggregator point-of-view it is important that

the cost associated with the technologies and financial compensa-

tions paid to customers are less than the profits that can be made by

efficiently controlling vehicles of customers.

2.2 Wind Speed Forecasting using Scenarios
Wind forecasting methods can be categorized as either physical or sta-

tistical, where the latter are suitable for short-term prediction [11]. We

use a short-term forecasting method that finds analogs [31] between

observed wind speed and historical wind data [35].

The average wind speed during hour t is denoted wt, and becomes

known at the start of hour t+ 1.2 At the start of hour t, wind speed

forecasts ŵt, ŵt+1, . . . can be computed as follows. Given a sequence

of past observations wt−b, . . . , wt−2, wt−1 of length b, we identify

similar sequences in a historical dataset containing wind speed mea-

surements based on the Euclidean distance [35]. For each identified se-

quence ŵt−b, . . . , ŵt−2, ŵt−1, the subsequent historical wind speed

measurements ŵt, ŵt+1, . . . , ŵt+y provide a scenario of length y
describing future wind speed.

Probabilistic wind speed forecasts can be encoded using scenario

trees [7]. Scenario trees can also be combined with wind forecasting

methods such as ARMA models [28], and therefore the planning

methods that we present in this paper are not limited to analog-based

wind forecasting. Furthermore, the size of the tree can be managed

using scenario reduction techniques [10].

2.3 Markov Decision Processes
We use techniques based on the Markov Decision Process (MDP)

formalism [23] and its extension to multiple agents [5]. An MDP is

a tuple (S,A, P,R, T ), where S is a finite set of states and A is a

finite set of actions. The function P : S × A × S → R defines the

state transition probabilities, where P (s, a, s′) is the probability to

transition from state s to state s′ after executing action a. Similarly,

the function R : S × A × S → R defines the reward function,

whereR(s, a, s′) is the immediate reward received when transitioning

from state s to s′ after executing action a. The feasible set of actions

that can be executed in state s is denoted A(s), and the MDP has a

finite time horizon T . A policy is a function π : S → A which maps

states to actions and this function can be used by a decision maker to

2 Note that throughout the paper we assume hourly intervals, but our method
is trivially generalized to other intervals.
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Figure 1: Vehicle aggregation with conventionally-generated grid

power, wind power and n electric vehicles.

select an action for a given state. Optimal policies can be defined in

terms of a value function V π : S → R. The value of a state s under

policy π, denoted by V π(s), is defined as the expected reward when

starting from state s and following policy π thereafter. For an optimal

policy π∗ it holds that V π∗(s) ≥ V π(s) for each state s ∈ S and for

each policy π. The optimal value function of a finite-horizon MDP

can be computed as follows:

V ∗
t (s) = max

a∈A(s)

∑
s′∈S

P (s, a, s′)(R(s, a, s′) + V ∗
t+1(s

′)), (1)

for t = 0, . . . , T − 1. The corresponding time-dependent optimal

policy π∗t : S → A can be defined as follows:

π∗t (s) = argmax
a∈A(s)

∑
s′∈S

P (s, a, s′)(R(s, a, s′) + V ∗
t+1(s

′)), (2)

for t = 0, . . . , T − 1. Note that the value V ∗
T (s), corresponding to

the final recursive step, can be defined as zero. Alternatively, it can

represent a final reward corresponding to state s.
The MMDP formalism [5] generalizes MDPs to the multiagent

case, in which a state s ∈ S characterizes the joint state of the agents

and actions a ∈ A represent the joint actions that can be executed by

the agents. An MMDP can still be considered as a regular MDP, and

can be solved using the same algorithms (e.g., value iteration).

3 AGGREGATED EV CHARGING

We propose a vehicle aggregation framework as shown in Figure 1.

The aggregator is responsible for charging n EVs and is able to use

wind power generated by small-scale wind turbines in the residential

area, such as wind turbines mounted on tall apartment buildings. Wind

power has negligible marginal cost, and excess of wind power can

be sold to the utility company. If the amount of wind power is not

sufficient to charge the vehicles in time, additional conventionally-

generated power can be bought from the utility company.

Now we formally introduce the optimization problem that needs

to be solved by the aggregator. We consider an ordered set E =
(e1, . . . , en) containing n electric vehicles. A vehicle ei is connected

to its charging point at the start of hour ci, and needs to charge

hi hours before the start of hour di. Thus, we can define each vehi-

cle ei as a tuple ei = (ci, di, hi). We assume that the charging rate

of each charging point is equal to z kW and that each charging point

can only accommodate a single vehicle.

The aggregator is able to buy power from the utility company and

pays pbt per kWh during hour t. If the wind turbine produces more

power than needed, excess wind power can be sold to the utility

company for pst per kWh during hour t. The aggregator receives a

fixed paymentmi from each EV ei ∈ E once charging has finished,

which is dependent on the amount of energy used to charge the vehicle.

The power generated by the wind turbine during hour t is g(wt)
kW, where wt is the wind speed during hour t. The mapping from
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wind speed to wind power can be modeled as follows [26]:

g(wt) = C · (1 + e6−
2
3
wt)−1, (3)

where C is the rated capacity of the wind turbine.

In order to define the objective function of the aggregator, we

introduce decision variables corresponding to the charging decisions

of the vehicles. Note that as the aggregator is contractually obligated

to charge all vehicles by their deadline (if feasible given deadline and

charge required), its payments mi are not present in the objective

function. Variable xi,t equals 1 if vehicle ei charges during hour t,
and is 0 otherwise. The total number of charging vehicles during

hour t can be defined as xt =
∑n

i=1 xi,t. The optimization problem

of the aggregator can be formulated as follows:

max

T−1∑
t=0

f(xt, wt)

s.t.

di−1∑
t=ci

xi,t = hi i = 1, . . . , n,

where the function f computes the benefit to be had by the aggregator

when charging xt vehicles if the wind speed is wt during hour t. The

function can be defined as follows:

f(xt, wt) =

{
pst · (g(wt)− xt · z) g(wt) > xt · z
pbt · (g(wt)− xt · z) otherwise

. (4)

Note that this function returns negative values if the amount of wind

power g(wt) is not sufficient to charge xt vehicles, because in such

cases additional power needs to be bought from the utility company.

The total profit of the aggregator can be defined as:

n∑
i=1

mi +

T−1∑
t=0

f(xt, wt). (5)

If the wind speed over time and the parameters of the vehicles are

known, then the optimization problem can be solved using mixed-

integer programming. However, the aggregator does not know pre-

cisely how much wind power will be generated in the future, and

needs to make decisions under uncertainty.

In this paper we address this problem using the MDP formalism

because of two reasons. First, it allows us to conveniently separate the

reasoning about exogenous wind uncertainty and the reasoning about

electric vehicles, as we will show in the next section. Second, MDPs

are particularly powerful in situations where the decision maker is

able to control the degree of uncertainty that will be encountered in

the future. For example, charging overnight before driving to work

influences the uncertain demand of the vehicle at the end of the day,

since the battery level upon arrival depends on the initial battery level

and the distance. This paper only focuses on supply uncertainty and

the problem representation, but we selected the MDP formalism based

on its potential for extension to uncertainty in charging demand.

4 PLANNING FOR AGGREGATED EV
CHARGING

In this section we show how the planning problem for aggregated

EV charging can be formulated as a Multiagent Markov Decision

Process (MMDP). First we discuss how MDP value functions can be

computed in scenario trees which encode wind forecasts. Thereafter

we introduce an MMDP model in which each agent represents an

electric vehicle that needs to be charged.

wt−1
...

p1

pk

. . .

. . .

ŵ1
t

ŵk
t

t t+ 1

(a)

Vwt−1,t(s)

Vŵ1
t ,t+1(s)

Vŵk
t ,t+1(s)

...

t t+ 1

p1

pk

. . .

. . .

(b)

Figure 2: (a) Scenario tree representing wt−1, and k branches cor-

responding to forecasts of wt and their probabilities. (b) Value tree

containing a value function for hour t, and k value functions for

hour t+ 1.

4.1 Computing Value Functions in Scenario Trees
We use a scenario tree representation which encodes the scenarios as

a tree, as illustrated in Figure 2a. The tree is constructed at the start

of hour t, when wt−1 becomes known, and forecasted wind speed

values are represented by branches j in the tree with a corresponding

probability pj . We introduce separate value functions associated with

the nodes of the tree, which allows us to separate the exogenous wind

uncertainty and the state transitions of the MMDP model [19]. The

tree representation allows us to encode time-dependent wind forecasts,

and by doing so we can avoid separate time-dependent MMDP state

variables to encode wind uncertainty as part of the state transitions.

Figure 2b shows a value function Vwt−1,t(s) that can be used

to select an action at the start of hour t, and the corresponding

tree has the same structure as the scenario tree in Figure 2a. There

are k possible realizations for the wind speed during hour t, rep-

resented by ŵ1
t , . . . , ŵ

k
t , and there is a probability pj and value

function V
ŵ

j
t ,t+1

(s) corresponding to each realization. The value

function Vwt−1,t(s) can be computed as shown below:

Vwt−1,t(s) = max
a∈A(s)

k∑
j=1

∑
s′∈S

(pj · P (s, a, s′) · (6)

(
R(s, a, s′, t, ŵj

t ) + Vŵj
t ,t+1

(s′))
)
,

where the function R(s, a, s′, t, ŵi
t) is an augmented reward function

that is also dependent on the wind speed ŵi
t during hour t. The state

transitions of the MMDP model do not depend on the wind speeds,

whereas the augmented reward function allows us to define a reward

function that is dependent on both the state and wind speed.

The value functions for the entire scenario tree can be computed

using dynamic programming, in which the value function of each

node is computed using the value functions of its child nodes. In

Figure 2b we show the tree for just one step ahead. However, the

value functions V
ŵ

j
t ,t+1

also need to be computed recursively based

on the value functions in multiple subsequent branches. The wind

forecast encoded by the scenario tree consists of a finite number of

future timesteps, and therefore we have a finite planning horizon.

Eventually, an optimal action can be chosen using the value function

associated with the root of the tree. The tree representation of the

value function corresponds to the recursive formulation in Equation 1,

which we formalize below.

Proposition 1. The value function in Equation 6 defines an optimal
value function for an MDP with wind-dependent rewards, whose state
transitions are independent of the wind transitions encoded by the
scenario tree.

Proof. We show that Equation 6 can be derived from Equation 1. For

the purpose of the proof we make a distinction between an MMDP

E. Walraven and M.T.J. Spaan / Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply906



state s and a global state 〈s, t, wt−1〉. The MMDP state encodes the

EV charging state. The global state encodes both the MMDP state as

well as the wind speed during the previous time period and a time step

index. Since an MMDP is an MDP, it suffices to use the equation of

an optimal MDP value function in the derivation. The value function

at the start of hour t maps global states to values and can be defined

as follows using Equation 1:

V (〈s, t, wt−1〉) = (7)

max
a∈A(s)

∑
〈s′,t+1,ŵ

j
t 〉∈Qt

P (〈s, t, wt−1〉, a, 〈s′, t+ 1, ŵj
t 〉)·

(
R(〈s, t, wt−1〉, a, 〈s′, t+ 1, ŵj

t 〉) + V (〈s′, t+ 1, ŵj
t 〉)
)
,

whereQt = {〈s′, t+1, ŵj
t 〉 | s′ ∈ S, ŵj

t ∈ {ŵ1
t , . . . , ŵ

k
t }} contains

all possible global states at the start of hour t + 1. The MMDP

state transitions are independent of the wind transitions and the wind

speed transitions are independent of the actions. Hence, it holds that

P (〈s, t, wt−1〉, a, 〈s′, t + 1, ŵj
t 〉) = pj · P (s, a, s′). The reward

function of the MMDP model depends on the wind speed. Therefore,

we define R(〈s, t, wt−1〉, a, 〈s′, t + 1, ŵj
t 〉) = R(s, a, s′, t, ŵj

t ) to

simplify notation. The variable wt−1 can be left out because the

reward received after hour t does not depend on the wind speed

during hour t − 1. Now the aforementioned value function can be

simplified as follows:

V (〈s, t, wt−1〉) = max
a∈A(s)

k∑
j=1

∑
s′∈S

pj · P (s, a, s′) · (8)

(
R(s, a, s′, t, ŵj

t ) + V (〈s′, t+ 1, ŵj
t 〉)
)
.

The sum operators still define a sum over all elements in Qt. Since

the transitions of the time step counter t are assumed determinis-

tic, the summation over all possibilities for t + 1 can be left out.

The resulting value function can be transformed to Equation 6 by

defining V (〈s, t, wt−1〉) = Vwt−1,t(s) and V (〈s′, t + 1, ŵj
t 〉) =

V
ŵ

j
t ,t+1

(s′), which is a simplification of the notation. This step com-

pletes the derivation of Equation 6 from Equation 1. An identical

derivation can be used to recursively transform the value function

equations in the other nodes of the value function tree. Since we

consider finite-horizon forecasts and thus a value function tree with a

finite number of leafs, this concludes the proof.

4.2 Vehicle-Based MMDP formulation
Now we describe how the aggregated EV charging problem can be

formulated as MMDP, in which each agent represents an electric

vehicle. At the start of hour t, we define the state hti of a vehicle as the

remaining number of hours during which it needs to charge (assuming

a vehicle should be fully charged by the deadline). Since charging

must finish before the deadline, it should hold that hdii = 0.

Each agent has two actions which it can execute: charge and idle.

The charge action reduces the demand by one hour: ht+1
i = hti − 1,

and the idle action does not affect its state of charge (i.e., ht+1
i = hti).

We use a state-dependent action space to ensure that vehicles are

guaranteed to meet their deadline. In state hti the idle action can only

be executed if hti < di− t, which ensures that there is always enough

time left to complete charging before the deadline. The action charge
can be executed if hti > 0, and must be executed if hti = di − t.
By using the state-dependent action space that we just described,

it is guaranteed that hdii = 0. This is formalized in the following

proposition.

Proposition 2. The state-dependent action space ensures that a vehi-
cle ei always completes charging before its deadline di.

Proof. In order to show that a vehicle always finishes charging before

its deadline, we need to show that the action idle is never executed

in situations where it would lead to a violation of the deadline. For

this purpose we assume the contrary, namely that the idle action is

executed in state hti , leading to a state ht+1
i in which the demand is

one higher than the time left for charging: ht+1
i = (di− (t+1))+ 1.

Since the idle action was executed, it holds that hti = ht+1
i . Now

we derive hti = ht+1
i = (di − (t + 1)) + 1 = di − t. In state hti ,

however, action charge must have been executed according to our

state-dependent action space. This contradicts the assumption that

idle was executed in state hti . We can conclude that the action idle is

never executed if it leads to a situation in which it violates a deadline,

and we can conclude that our state-dependent action space ensures

that vehicles meet their deadline (i.e., hdii = 0).

Until now we defined the states and state-dependent action space

for an individual vehicle. For multiple vehicles the joint states and

actions of the MMDP can be created by taking the Cartesian product

of the states and actions of individual vehicles. For example, if there

are two vehicles with states ht1 and ht2 at the start of hour t, then their

joint state is (ht1, h
t
2) and an example of a joint action is (charge, idle).

The joint reward function of the agents can be computed using the

function f(xt, wt) defined in Equation 4, where xt is the number

of charging vehicles and wt is the wind speed during hour t. For

instance, if a joint action dictates that xt vehicles need to charge

during step t when the wind speed is wt, then the MMDP reward is

equal to f(xt, wt). The state transitions of the electric vehicles are

assumed deterministic and therefore we do not define a probabilistic

transition function. The probabilistic transitions of wind speed are

encoded separately using the scenario tree, as discussed in the previous

section.

In our MMDP formulation the individual vehicles are transition-

independent (i.e., P can be computed as the product of individual

transition functions defined over the individual states and actions of

each vehicle), as the decision whether or not to charge a particular

vehicle only affects that vehicle’s state of charge. However, since

they are coupled through the joint reward function (only a certain

number of vehicles can be charged for free using renewable energy),

the value function is not factored. Specific solution algorithms have

been designed for transition-independent Decentralized MDPs [4, 9],

in which vehicles would take decisions in a decentralized manner.

However, these solution techniques do not apply to our MMDP model

in which an aggregator controls vehicles in a centralized manner.

Other solution algorithms for transition-independent MMDPs exploit

sparse reward structures [25], in which only a small subset of the joint

actions has a non-zero reward. The latter is not the case in our model.

4.3 Reducing Enumerated States

In this section we present an optimization which reduces the number

of states that need to be enumerated in each node of the value function

tree when recursively computing the value functions. The number of

enumerated states can be reduced by observing that some parts of

the state space cannot be reached. For instance, states representing

a situation in which a deadline is going to be violated will never

be encountered, as stated in Proposition 2, and therefore such states

do not need to be considered. When recursively computing a value

function Vwt′−1,t
′(s) corresponding to time t′ ≥ t, it is necessary to
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Figure 3: Vehicle-based and group-based MMDPs.

determine which states s need to be enumerated. For instance, sup-

pose that state s = (ht
′
1 , h

t′
2 ) encodes the joint state of two vehicles at

time t′, then all possible combinations of ht
′
1 and ht

′
2 can be enumer-

ated in order to enumerate all possible states s. The states ht
′
i which

need to be enumerated for vehicle ei ∈ E can be defined as follows:

max(0, hti − (t′ − t)) ≤ ht′i ≤ min(hti, d− t′). (9)

The lowerbound is achieved when charging as fast as possible

during hours t, . . . , t′−1, and the upperbound is achieved when being

idle as much as possible during this period. The actions a ∈ A(s) that

need to be enumerated during the computation of Vwt′−1,t
′(s) can be

defined using the state-dependent action space.

5 GROUP-BASED MMDPs
In order to reduce the number of joint states and actions when increas-

ing the number of electric vehicles, we present a group-based MMDP

formulation in which each agent represents a group of vehicles. The

difference between vehicle-based and group-based MMDP formula-

tions is illustrated in Figure 3. The grouping technique is based on

deadlines of vehicles, which is formalized below.

Definition 1 (Vehicle group). A vehicle group Gd ⊆ E is defined as
a subset of vehicles whose deadline is equal to d. In other words, for
each ei ∈ Gd it holds that di = d .

The state of group Gd at the start of hour t is defined as std =∑
ei∈Gd

hti , which is simply the aggregated demand of the vehicles

belonging to the group. It should hold that sdd = 0, since the deadline

of the vehicles belonging to the group is identical. Our group-based

planner only requires that all vehicles in a group share the same

deadline, hence an aggregator could create many Gd sets. If the

available renewable energy is split among them equally (for instance),

each such set can be planned for separately. The action space Ad

contains charging actions corresponding to groupGd. Each action a ∈
Ad corresponds to the number of vehicles that is charging within the

group. After executing action a, the demand of the entire group is

reduced accordingly: st+1
d = std − a.

Similar to the vehicle-based formulation, for multiple groups the

joint states and joint actions can be defined by taking the Cartesian

product of the states and actions of the groups. For example, if there

are two groups with states st1 and st2, then the joint state of the groups

is (st1, s
t
2). If there is one vehicle that is charging within both groups,

then (1, 1) would be a joint action. In the next section we will elabo-

rate on the state-dependent action space which ensures that the planner

does not violate the deadline of a group, similar to the state-dependent

action space of the vehicle-based formulation. The joint reward can be

computed using the function f(xt, wt), similar to the vehicle-based

formulation, where xt is the number of charging vehicles and wt is

the wind speed during hour t.
Even with grouping of vehicles, obstacles to scalability might re-

main. In particular, it might be the case (and even likely in a typical

overnight charging scenario) that many vehicles share the same dead-

line and hence certain Gd sets will be large, resulting in large Ad

sets. A potential solution to this problem is restricting the Ad sets, by

considering charging only multiples of l vehicles, i.e.,

Ad = {0, l, 2l, 3l, . . . , |Gd|}. (10)

The loss of fine-grained control will typically be compensated by the

ability to solve for larger sets of vehicles. This aspect will also be

studied in our experiments.

Example 1 (Vehicle grouping). In our example formulation we con-
sider six electric vehicles connected to an aggregator at time t = 0.
The relevant properties of the individual vehicles are shown in Table 1.
First we compare the number of states and actions of vehicle-based
and group-based MMDP models. When formulating a vehicle-based
MMDP, the total number of states is equal to

∏6
i=1(h

0
i + 1) = 2160

and the number of actions is equal to 26 = 64. A group-based
MMDP formulation can be created by defining a group G4 with
demand 3, a group G5 with demand 3 and a group G6 with de-
mand 11. The number of states in such a formulation is equal to
(3 + 1) · (3 + 1) · (11 + 1) = 192 and the number of actions
equals 3 · 2 · 4 = 24. Clearly, the total number of states and actions
decreased compared to the vehicle-based MMDP formulation. A Dy-
namic Bayesian network representation of the group-based MMDP is
shown in Figure 4. It should be noted that the wind speed transitions
in the actual implementation are encoded in a tree-based fashion, as
discussed in Section 4.1.

Table 1: Deadlines and demand of example vehicles.

i 1 2 3 4 5 6
di 4 4 5 6 6 6
h0
i 2 1 3 4 5 2

5.1 Planning with Group-Based MMDPs
A group-based MMDP can directly be solved by computing value

functions in the scenario tree. However, due to the aggregation of

multiple vehicles into groups it becomes less straightforward which

states and actions need to be enumerated in each node of the tree. In

this section we first define which states need to be enumerated, and

thereafter we discuss the state-dependent action space which ensures

that the planner does not violate deadlines of vehicles.

We consider a groupGd, for which we can assume that std is known

at the start of hour t, as well as hti for each ei ∈ Gd. This assumption

can be made since the aggregator is able to observe the states of

the individual vehicles before making a decision for hour t. When

recursively computing the value function Vwt−1,t(s), it is necessary to

know which states s = st
′
d need to be enumerated for timesteps t′ ≥ t.

For this purpose we generalize the bounds shown in Equation 9 to

bounds on the demand of a group as shown below.∑
ei∈Gd

max(0, hti − (t′ − t)) ≤ st′d ≤
∑

ei∈Gd

min(hti, d− t′) (11)

The lower bound has been defined by taking the sum of the lower

bounds on the demand ht
′
i for each vehicle ei ∈ Gd. Similarly, the

upper bound has been defined by taking the sum of the upper bounds

on the demand. The resulting bounds can be used to ensure that we

do not enumerate unreachable states in case we use a group-based

formulation.

Similar to the vehicle-based MMDP formulation, the executed

actions need to ensure that the demand of an entire group is decreased
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Figure 4: Dynamic Bayesian network corresponding to the group-

based MMDP of the example instance.

to zero before its deadline. Therefore, we define a state-dependent

action space for a group-based state st
′
d . For convenience we let 1st′d 2

denote the lower bound on st
′
d and �st′d � denotes the upper bound on

st
′
d . In other words, we obtain the following equations:

1st′d 2 =
∑

ei∈Gd

max(0, hti − (t′ − t)), (12)

�st′d � =
∑

ei∈Gd

min(hti, d− t′). (13)

Now we can restrict the actions a ∈ A(st′d ) for a state st
′
d (t ≤ t′ < d)

as follows:

max
(
0, st

′
d − �st

′+1
d �
)
≤ a ≤ min

(
|Gd|, st

′
d − 1st

′+1
d 2
)
. (14)

In the computation of the state-dependent action spaceA(st
′
d ) we also

use the lower- and upper bound on st
′+1
d . These bounds have been

properly defined in Equations 12 and 13. The state-dependent action

space ensures that in state st
′
d an action is selected in such a way that

1st′+1
d 2 ≤ st′+1

d ≤ �st′+1
d �. It holds that 0 = 1sdd2 ≤ sdd ≤ �sdd� =

0, which implies that the total group demand is reduced to zero before

the deadline.

Proposition 3. The state-dependent action space for a group Gd

ensures that all vehicles ei ∈ Gd always complete charging before
their deadline d.

Proof. If the group demand st
′+1
d at time t′+1 is higher than �st′+1

d �,
then it is impossible to reduce the demand to zero before the deadline.

We will show that this never occurs. If st
′
d > �st

′+1
d �, then the state-

dependent action space defines that at least st
′
d − �st

′+1
d � vehicles

will be charged, such that st
′+1
d ≤ st′d − (st

′
d − �st

′+1
d �) = �st′+1

d �.
In other words, any action executed in state st

′
d guarantees that st

′+1
d

does not exceed �st′+1
d �. Therefore, we can conclude that the state-

dependent action space ensures that the planner does not violate the

deadline of a group.

We have shown that our group-based formulation defines states for

groups of vehicles, while still being able to meet the deadlines of all

individual vehicles in the EV fleet. It should be noted, however, that

the group-based MMDP formulation does not define a Markovian

state representation for the original EV charging problem. In other

words, the state representation of the group-based formulation does

not preserve sufficient information to derive the individual states of

all the vehicles within the groups. Due to the aggregation of multiple

vehicles into one group the upper bound on the number of vehicles

that still needs to charge (i.e., the upper bound on a) may overestimate

the number of vehicles that is actually available for charging. In the

example below we discuss this potential overestimate in an example.

An overestimate might only occur during planning when selecting

the actions to compute value functions. When the resulting value

function is used to select actions to control the vehicles, then such

an overestimate never occurs, because the feasible actions can be

determined using the actual state of the individual vehicles.

Example 2 (Overestimate of demand). Using the previous example
instance we illustrate why infeasible actions may be enumerated
during the computation of value functions. We consider group G4

containing two vehicles with demand ht1 = 2 and ht2 = 1 at time t =
0. By definition it holds that st4 = 3. We consider the group-based
state st

′
4 at time t′ = 1, for which it holds that 1 ≤ st′4 ≤ 3. In

state st
′
4 = 2, the upper bound on the number of vehicles with non-

zero demand is min(|G4|, st
′
4 −
∑

ei∈G4
max(0, hti − ((t′ + 1) −

t))) = min(2, 2 − max(0, 2 − 2) − max(0, 1 − 2)) = 2, which
represents that we can charge at most two vehicles simultaneously
in this state. However, it may be possible that ht

′
1 = 2 and ht

′
2 = 0,

and then only one vehicle can be charged. In this case the number of
vehicles with non-zero demand is overestimated by 1.

6 EXPERIMENTS
This section describes the results of our experiments. We use historical

wind data from the Sotavento wind farm in Spain.3 We simulate the

hourly average wind speed for the period from September 2, 2012

until September 26, 2012. The forecasts are based on data from the

period September 1, 2009 until December 31, 2009. Unless stated

otherwise, the capacity of the wind turbine involved is 50 kW. We

assume that the charging rate of the vehicles is equal to 3 kW, which

corresponds to a compact car. The electricity price during the simula-

tion is time-dependent, for which we use data from a European power

market, which gives us an hourly price (unit EUR/kWh). Unless stated

otherwise, the feed-in tariff is 50 percent of the tariff for buying power.

To define EVs we use realistic vehicle arrival and departure times

from a Dutch mobility study, conducted by Statistics Netherlands [6].

6.1 Aggregator Profit and Power Consumption
First we investigate whether the aggregator is able to make profit by

coordinating vehicles. We simulate 25 days, and during each day we

charge 20 vehicles. For each vehicle ei ∈ E, the paymentmi is 10

percent lower than the minimum cost the customer would pay to the

utility company without participation, which provides an incentive for

the customers to subscribe to the aggregator. In order to compensate

for the discount given to customers, the aggregator needs to efficiently

use zero-cost wind power. It is estimated that there is a 25 percent

market share of EVs starting in 2020 [14], hence 20 vehicles can

represent a realistically-sized street or a small neighborhood.

Figure 5 shows the cumulative daily profit of the aggregator for

several different planners, which needs to be maximized. In addition

to our MMDP planner with groups, we use a greedy planner which

charges each vehicle during its individually cheapest hours (i.e., min

cost), and another greedy planner which charges the vehicles as fast as

3 Data is available on www.sotaventogalicia.com.
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Figure 5: Cumulative profit made by the aggregator.
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Figure 6: Cumulative power consumption of the vehicles.

possible. Lower- and upper bounds on the profit have been computed

using a mixed-integer programming formulation, which computes

omniscient optimal and worst-case charging schedules based on the

wind speed during the day. In practice it would not be possible to find

such schedules, since wind speed in the future is uncertain.

We conclude that the aggregator is able to make profit by coordinat-

ing vehicles, even if it provides a financial compensation to customers

of the vehicles. Moreover, the group-based MMDP planner outper-

forms two greedy planners in terms of profit, and its profit is close to

the profit of the omniscient optimal planner.

Although the main objective of the aggregator is optimizing its

profit, it may be able to reduce power consumption from the grid, since

it is able to charge vehicles during periods in which wind speed is high.

Figure 6 shows the cumulative grid power consumption corresponding

to the simulation of the previous experiment. We observe that the

grid power consumption of the MMDP planner is lower than the

power consumption of the greedy planners involved in the experiment.

Therefore, we conclude that an aggregator that aims to maximize its

profit also reduces grid power consumption, which can be considered

as one of its side effects.

6.2 Vehicle-Based and Group-Based MMDPs

Next we study the influence of grouping on the scalability of MMDP

formulations for electric vehicle charging. To study the difference

between vehicle-based and group-based MMDPs, we constructed a

set of EVs E′ = (e1, . . . , e15), in which the first three vehicles do

not have common deadlines. When we run vehicle-based and group-

based planners on the first 1 ≤ δ ≤ 15 vehicles of E′, we expect that

grouping only provides improved scalability if δ > 3. In Figure 7 we

show the running times of vehicle-based and group-based MMDPs

for an increasing δ (i.e., number of vehicles), which confirms our

expectation that group-based formulations require less computation

time if groups of vehicles can be created. Note that a log scale is used

for the y-axis representing the running time.

2 4 6 8 10 12 14

100

101

102

Number of vehicles

R
un

ni
ng

 ti
m

e 
(s

) Vehicle MMDP
Group MMDP

Figure 7: Running time comparison between vehicle-based and group-

based MMDP formulations (log scale).

6.3 Action Space Compression
When after grouping large sets of vehicles remain, it may be desir-

able to perform action space compression to reduce the number of

enumerated actions, as defined in Equation 10. This means that the

planner only considers charging multiples of l vehicles. For a case of

15 vehicles, Figure 8a shows the effect on runtime of increasing l (i.e.,

the level of discretization of the action space) and Figure 8b shows

the corresponding profit. We can see that as expected a small loss is

incurred, but the running time required for the computation of the

value functions decreases significantly. The dashed lines represent the

profit of the omniscient optimal and greedy min cost planners in the

simulation. Our MMDP planner still makes more profit compared to

the greedy min cost planner in the simulation.

6.4 Influence of Wind Turbine Capacity
Until now we assumed a fixed turbine capacity, but it can be expected

that the turbine capacity influences the profit of the aggregator. In

order to study this influence, we run simulations in which we charge

15 vehicles during each day, and we assume that wind power cannot

be sold to the utility company. The latter is assumed because this

eliminates the influence of selling wind power in our experiment.

Small-scale wind power involves turbines with a capacity of at most

50 kW, and therefore we repeat the simulation for an increasing

turbine capacity up to 50kW, as shown in Figure 9a. We can derive

three conclusions. First, if the turbine capacity is too low then the

aggregator is not able to make profit. This is caused by the fact that

the charging cost will exceed the customer payments if there is almost

no wind power available. Second, a relatively small wind turbine may

already be sufficient to make profit. Third, the experiment shows that

it is likely that our framework can be used in the residential area where

wind turbines typically have a capacity up to a few kilowatts [3].

6.5 Influence of Customer Payments
In the previous experiment we observed that the financial compensa-

tion paid to the customers influences the profit of the aggregator, and

we expect that profit becomes negative if the compensations are too

high compared to the usage of zero-cost wind power. In the current

experiment we assume that the paymentsmi are α percent lower than

the minimum cost the customer would pay to the utility company

without participation (0 < α ≤ 100), and we run simulations for an

increasing value of α. The parameter α is called the vehicle discount.

In Figure 9b we show the profit of the aggregator as a function of the

vehicle discount, which confirms our expectation that it is impossible

to make profit if the discount is too high. In order to provide an incen-

tive to customers of EVs to participate, it is sufficient to have a small
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Figure 8: Effect of action space compression (10).

non-zero α, and therefore we conclude that the paymentsmi of our

framework provide an incentive to customers to participate.

7 RELATED WORK
Leterme et al. discuss an MDP-based approach to control EVs for

wind balancing, in which wind uncertainty is encoded as a tree [19],

but in contrast to our work their solution does not control individ-

ual EVs. Huang et al. [16] cluster EVs based on remaining parking

time and use Monte Carlo simulations to estimate a value function.

Our scenario-tree encoding of the wind uncertainty provides a more

advanced representation of wind uncertainty and cannot directly be

combined with their approach. Other objective functions, such as

waiting time at charging stations, have also been studied in existing

work [37]. Aggregators can use reinforcement learning to learn a

consumption pattern of their fleet before buying energy in the day-

ahead market [32]. Currently our work only focuses on uncertainty

in renewable supply, and it does not model bids in a day-ahead or

intraday energy market.

In the power systems community research has focused on matching

demand and supply in the unit commitment problem using multi-stage

stochastic programming and mixed-integer programming, where ex-

ogenous uncertainty in the supply is also characterized using scenar-

ios [22]. Multi-stage stochastic programming methods are typically

used for problems with exogenous uncertainty that cannot be con-

trolled by the decision maker [8], whereas Markov Decision Processes

are well-suited if control actions influence the uncertainty encoun-

tered in the future. For example, stochastic state transitions in our

MDP models can also be used to model uncertainty in arrival time

and departure time of electric vehicles, which is hard to model in a

multi-stage stochastic programming formulation. Research has also

focused on inclusion of network characteristics in aggregate models

of multiple EVs [17]. Compared to our work, existing work in this

area focuses more on modeling the electrical aspects and the impact

on the power system. Congestion management schemes have been

developed for electric vehicles, which typically assume a determinis-

tic setting in which there is no uncertainty during optimization and

execution [33]. Our work can be used for congestion management if

renewable supply is uncertain.

Reducing computational requirements by aggregating states of

MDPs has been studied in the context of stochastic bisimulation [12],

which is an exact method to compute an equivalent smaller-sized

MDP, and symmetry reduction [18]. Both methods can theoretically

be combined with our work, but require a given MDP which needs

to be minimized [20] and often require full state-space enumeration.

The latter leads to problems in the multiagent setting because of the

exponential growth of the number of states. Our group-based model

can be created without needing an initial model, but the abstraction

method is not exact. Other abstraction methods include temporal
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Figure 9: Profit for increasing turbine capacity (a) and discount (b).

abstractions, such as macro-actions [15] and Semi-MDPs [27], which

would allow an aggregator to solve an abstract planning problem to

select sub-policies rather than actions. However, these abstractions do

not address scalability problems that follow from the large number

of EVs, and it is hard to combine such abstraction techniques with

exogenous wind uncertainty.

Constrained MDPs [1] include constraints in the dual formulation

of a linear program. This framework can also be used to impose

constraints to make sure that deadlines are satisfied, but it would be

difficult to separate the reasoning about exogenous wind uncertainty

in the corresponding linear programming formulations. Moreover,

linear programs for Constrained MDPs are typically based on the

assumption that the planning horizon is infinite.

8 CONCLUSIONS

In this paper we present an aggregated charging technique based on

Multiagent Markov Decision Processes which accounts for the un-

certainty in renewable supply and coordinates the charging process

of several EVs. We use groups of vehicles to create an abstraction

of the MMDP, which reduces the number of joint states and actions

and it reduces the running time required to compute MMDP solutions.

Our experiments show that our framework is able to charge a collec-

tion of EVs, reduces cost of the individual customers and reduces

consumption of conventionally-generated power. Moreover, our work

demonstrates that AI methods have the potential to support the de-

velopment of smart grids. For example, an interesting application of

our work can be found in parking garages with local grid capacity

constraints, where charging of a large number of EVs needs to be

coordinated and peak loads must be prevented.

In future work we aim to include information about uncertain de-

mand in our MMDP formulations, which can be naturally included in

stochastic state transitions. Our work can also be extended to asyn-

chronous events and actions using Generalized Semi-MDPs [36], and

it can be combined with wind scenario trees generated by ARMA

models [28]. Another interesting direction is creating groups of vehi-

cles based on additional characteristics besides their deadline, such as

the charging rate and spatial location in the network. Our method can

also be combined with power flow computations to derive the power

flows through the network. This is useful if capacity violations must

be prevented in a congested network.
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[26] P. Ströhle, E. H. Gerding, M. M. de Weerdt, S. Stein, and V. Robu,
‘Online Mechanism Design for Scheduling Non-Preemptive Jobs under
Uncertain Supply and Demand’, in Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems, pp. 437–
444, (2014).

[27] R. S. Sutton, D. Precup, and S. Singh, ‘Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning’, Artifi-
cial Intelligence, 112(1), 181–211, (1999).

[28] J. L. Torres, A. Garcı́a, M. De Blas, and A. De Francisco, ‘Forecast of
hourly average wind speed with ARMA models in Navarre (Spain)’,
Solar Energy, 79(1), 65–77, (2005).

[29] F. Ueckerdt, R. Brecha, and G. Luderer, ‘Analyzing Major Challenges
of Wind and Solar Variability in Power Systems’, Renewable Energy,
81, 1 – 10, (2015).

[30] E. Ungar and K. Fell, ‘Plug in, turn on, and load up’, IEEE Power and
Energy Magazine, 8(3), 30–35, (2010).

[31] H. M. van den Dool, ‘A New Look at Weather Forecasting through
Analogues’, Monthly Weather Review, 117(10), 2230–2247, (1989).

[32] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, and G. Deconinck, ‘Re-
inforcement Learning of Heuristic EV Fleet Charging in a Day-Ahead
Electricity Market’, IEEE Transactions on Smart Grid, 6(4), 1795–1805,
(2015).

[33] R. A. Verzijlbergh, The Power of Electric Vehicles - Exploring the value
of flexible electricity demand in a multi-actor context, Ph.D. dissertation,
Delft University of Technology, 2013.

[34] R. A. Verzijlbergh, L. J. de Vries, and Z. Lukszo, ‘Renewable Energy
Sources and Responsive Demand. Do We Need Congestion Management
in the Distribution Grid?’, IEEE Transactions on Power Systems, 29(5),
2119–2128, (2014).

[35] E. Walraven and M. T. J. Spaan, ‘Planning under Uncertainty with
Weighted State Scenarios’, in Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence, (2015).

[36] H. L. S. Younes and R. G. Simmons, ‘Solving Generalized Semi-Markov
Decision Processes using Continuous Phase-Type Distributions’, Pro-
ceedings of the 19th National Conference on Artificial Intelligence,
742–747, (2004).

[37] T. Zhang, W. Chen, Z. Han, and Z. Cao, ‘Charging Scheduling of Elec-
tric Vehicles With Local Renewable Energy Under Uncertain Electric
Vehicle Arrival and Grid Power Price’, IEEE Transactions on Vehicular
Technology, 63(6), 2600–2612, (2014).

E. Walraven and M.T.J. Spaan / Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply912


